Star Rating
Languages Supported
Pricing Options
Features

Data Warehouse reviews by real, verified users. Find unbiased ratings on user satisfaction, features, and price based on the most reviews available anywhere.

Best Data Warehouse Software

Data warehouse processes, transforms, and ingests data to fuel decision making within an organization. Data warehouse software act as a singular central repository of integrated data from multiple disparate sources that provide business insights with the help of big data analytics software and data visualization software. Data within a data warehouse comes from all branches of a company, including sales, finance, and marketing, among others.

Data warehouses can combine data from CRM automation tools, marketing automation platforms, ERP and supply chain management suites, and more, to enable precise analytical reporting and intelligent decision-making. Businesses may also use predictive analytics and artificial intelligence (AI) tools to pull trends and patterns found in the data. A critical capability of a data warehouse includes its ability to integrate with third-party business Intelligence software, data lake, data science workflows and machine learning, and AI technology.

Data warehouses are used in a diverse set of industries, including banking, finance, healthcare, insurance, and retail. Deployment models of a data warehouse include on-premises, private cloud, public cloud, and hybrid cloud. A modern cloud data warehouse is capable of handling a massive amount of complex data, can instantly be scaled up or down based on the business needs, perform rapid advanced analytical queries, and contain limited infrastructure setup costs.

To qualify for inclusion in the Data Warehouse category, a product must:

Contain data from several or all branches of a company
Integrate data prior to going into the data warehouse through an extract, transform and load (ETL) process
Allow users to perform queries and analyze the data stored inside the data warehouse
Offer multiple deployment options
Integrate with third-party reporting and business intelligence tools
Serve as an archive for historical data

Top 10 Data Warehouse Software

  • Amazon Redshift
  • Snowflake
  • IBM Db2
  • BigQuery
  • Vertica
  • Teradata Vantage
  • IBM Netezza Performance Server
  • Microsoft
  • Rubrik
  • Pivotal Greenplum

Compare Data Warehouse Software

G2 takes pride in showing unbiased reviews on user satisfaction in our ratings and reports. We do not allow paid placements in any of our ratings, rankings, or reports. Learn about our scoring methodologies.
Sort By:
Results: 90
View Grid®
Adv. Filters
(132)4.2 out of 5
Entry Level Price:$1.22 - $3.26 Per hour

Tens of thousands of customers use Amazon Redshift, a fast, fully managed, petabyte-scale data warehouse service that makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

(280)4.6 out of 5
Optimized for quick response
Entry Level Price:$2 Compute/Hour

Snowflake delivers the Data Cloud — a global network where thousands of organizations mobilize data with near-unlimited scale, concurrency, and performance. Inside the Data Cloud, organizations unite their siloed data, easily discover and securely share governed data, and execute diverse analytic workloads. Wherever data or users live, Snowflake delivers a single and seamless experience across multiple public clouds. Snowflake’s platform is the engine that powers and provides access to the Data

(529)4.0 out of 5
Optimized for quick response
Entry Level Price:0

About IBM Db2 IBM believes in unlocking the potential of your data, not throttling it. We hold our databases to a higher standard, making it easy to deploy your data wherever it's needed, fluidly adapting to your changing needs and integrating with multiple platforms, languages and workloads. IBM Db2 is supported across Linux, Unix, and Windows operating systems.

(282)4.4 out of 5
Entry Level Price:$0.02 per GB, per month.

BigQuery is Google's fully managed, petabyte scale, low cost enterprise data warehouse for analytics. BigQuery is serverless. There is no infrastructure to manage and you don't need a database administrator, so you can focus on analyzing data to find meaningful insights using familiar SQL. BigQuery is a powerful Big Data analytics platform used by all types of organizations, from startups to Fortune 500 companies.

(96)4.4 out of 5
Optimized for quick response
Entry Level Price:Free

The Vertica Analytics Platform is built for the scale and complexity of today's data-driven world. We are trusted by thousands of leading, data-driven enterprises including Bank of America, Etsy, Twitter, Intuit, Uber and more to deliver speed, scale and reliability on mission-critical analytics, at a lower total cost of ownership than legacy systems. Vertica combines the power of a high-performance, massively parallel processing SQL query engine with advanced analytics and machine learning so

(138)4.2 out of 5

The Teradata Database easily and efficiently handles complex data requirements and simplifies management of the data warehouse environment.

(59)4.0 out of 5
Optimized for quick response

Integrates database, server, storage and analytics into a single system with petabyte scalability. Fast analytics Provides a high-performance, massively parallel system that enables you to gain insight from your data and perform analytics on very large data volumes. Smart, efficient queries Simplifies analytics by consolidating all activity in one place, where the data resides. Simplified infrastructure Easy to deploy and manage; simplifies your data warehouse and analytic infrastructure. Do

(23)4.5 out of 5

Parallel Data Warehouse offers scalability to hundreds of terabytes and high performance through a massively parallel processing architecture.

(36)4.6 out of 5
Optimized for quick response

Rubrik delivers instant application availability to hybrid cloud enterprises for recovery, search, cloud, and development. By using the market-leading Cloud Data Management platform, customers mobilize applications, automate protection policies, recover from Ransomware, search and analyze application data at scale on one platform. From days to seconds. Rubrik has been named to Gartner’s Cool Vendors in Storage Technologies, 2016, the Forbes Cloud 100, and awarded the NorthFace ScoreBoard Award.

(53)4.3 out of 5

Advanced analytics meets traditional business intelligence with Pivotal Greenplum, the world’s first fully-featured, multi-cloud, massively parallel processing (MPP) data platform based on the open source Greenplum Database. Pivotal Greenplum provides comprehensive and integrated analytics on multi-structured data. Powered by one of the world’s most advanced cost-based query optimizers, Pivotal Greenplum delivers unmatched analytical query performance on massive volumes of data.

(17)4.4 out of 5

Azure SQL Data Warehouse is a cloud-based Enterprise Data Warehouse (EDW) that leverages Massively Parallel Processing (MPP) to quickly run complex queries across petabytes of data.

(21)4.8 out of 5
Optimized for quick response

Maximize the power of your data with Dremio—the data lake engine. Dremio operationalizes your cloud data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts via a governed self-service layer. The result is fast, easy data analytics for data consumers at the lowest cost per query for IT and data lake owners.

(55)3.7 out of 5

SAP Business Warehouse is a solution to help you manage business intelligence with business planning and analytical services, reporting, query, and more.

(35)4.5 out of 5
Entry Level Price:$200/mo

Panoply is the world’s first Smart Cloud Data Warehouse. Panoply delivers the industry’s fastest time to insights by eliminating the development and coding typically associated with transforming, integrating, and managing data. Panoply’s proprietary AI technology automatically enriches, transforms and optimizes complex data, making it simple to gain actionable insights. The company, based in San Francisco and Tel Aviv, is privately held and funded by investors such as Intel Capital, 500 Startups

Offer a fast, reliable, and cost-effective platform for data warehousing and business intelligence that is easy to scale to meet the complex reporting.

(16)3.9 out of 5

SAP BW/4HANA is a next-generation data warehouse solution. It is specifically designed to use the advanced in-memory capabilities of the SAP HANA platform. For example, SAP BW/HANA can integrate many different data sources to provide a single, logical view of all the data. This could include data contained in SAP and non-SAP applications running on-premise or in the cloud, and data lakes, such as those contained in the Apache Hadoop open-source software framework. With SAP BW/4HANA, IT organizat

(41)4.2 out of 5

Hive provides a mechanism to project structure onto this data and query the data using a SQL-like language called HiveQL. At the same time this language also allows traditional map/reduce programmers to plug in their custom mappers and reducers when it is inconvenient or inefficient to express this logic in HiveQL.

(33)4.3 out of 5
Optimized for quick response

ZAP Data Hub is the fastest way to deliver accurate, trusted financial and operational reporting in BI tools including Tableau and Power BI. We have optimized solutions for Microsoft Dynamics, the Sage portfolio, Salesforce, SAP Business One, SYSPRO, and smart data connectors for many other datasources. Founded in 2001, ZAP is a global software company headquartered in London, with offices and partners across Europe, North America, Middle East & Africa, and Asia Pacific. ZAP Data Hub is us

(20)3.9 out of 5

Apache Flume is a service designed to efficiently collect, aggregate, and move large amounts of log data.

(29)4.2 out of 5

Apache Druid is an open source real-time analytics database. Druid combines ideas from OLAP/analytic databases, timeseries databases, and search systems to create a complete real-time analytics solution for real-time data. It includes stream and batch ingestion, column-oriented storage, time-optimized partitioning, native OLAP and search indexing, SQL and REST support, flexible schemas; all with true horizontal scalability on a shared nothing, cloud native architecture that makes it easy to depl

(21)4.0 out of 5
Optimized for quick response

Better understand your data and cleanse, monitor, transform and deliver it. Build confidence in your data Delivers clean, consistent and timely information for your data warehouses or big data projects and applications. Create a flexible governance strategy Helps you adapt a data governance strategy to suit your organizational objectives, while shaping business information in unique ways to meet your needs. Modernize and consolidate your systems Enables you to consolidate applications, retire

(23)4.0 out of 5

Design, develop, deploy and operate data infrastructure fast with WhereScape automation.

(14)4.6 out of 5

Data Virtuality is a data integration and management platform for instant data access, easy data centralization, and data governance. It empowers companies to get fast and direct insights from scattered data. Data from multiple data sources can be integrated and managed in one interface. This not only simplifies data management but also drastically reduces data integration efforts - by up to 80%. The Data Virtuality platform offers three solutions: Data Virtuality Logical Data Warehouse - Hi

(8)4.4 out of 5

The PI System is an enterprise infrastructure for management of real-time data and events with tools and features to help you manage your data and more.

(4)5.0 out of 5

Acho is a place where you can find, process and publish data. No coding required, you may integrate different databases in one place, build complex data pipelines and publish data to wherever you want.

(4)4.8 out of 5

AnalyticDB is a real-time Online Analytical Processing (OLAP) managed database cloud service that can crunch enormous amounts of data.

(8)4.6 out of 5
Entry Level Price:0

We’re redefining what it means to be an analytics database company. Put simply, our high-performance in-memory analytics database gives you the power to transform how your organization works with data, on-premises, in the cloud or both – and turn it into value faster, easier and more cost effectively than ever before. What makes our analytics database different? Unrivalled performance Unlock analytics as fast as you think – and get unrivalled performance, anywhere you have data. Our database

What Is Oracle Autonomous Data Warehouse? Autonomous Data Warehouse is a fully managed database that’s tuned and optimized for data warehouse workloads. It combines the market-leading performance of Oracle Database with the ease of Autonomous Database, and is self-driving, self-securing, and self-repairing. Get faster access to analytics, instant elasticity, and smarter data from your data warehouse in the cloud. Autonomous Data Warehouse eliminates error-prone data management processes with

Teradata provides a complete family of purpose-built data warehouse platforms that address a full spectrum of needs ,from entry to enterprise level ,all designed to work with the proven power of the Teradata high-performance Database engine.

(2)4.0 out of 5

Apache Tajo is a robust big data relational and distributed data warehouse system for Apache Hadoop.

Select Grid® View
Select Company Size
G2 Grid® for Data Warehouse
Filter Grid®
Filter Grid®
Select Grid® View
Select Company Size
Check out the G2 Grid® for the top Data Warehouse Software products. G2 scores products and sellers based on reviews gathered from our user community, as well as data aggregated from online sources and social networks. Together, these scores are mapped on our proprietary G2 Grid®, which you can use to compare products, streamline the buying process, and quickly identify the best products based on the experiences of your peers.
Leaders
High Performers
Contenders
Niche
IBM Infosphere
IBM Netezza Performance Server
Microsoft
Oracle Exadata Cloud Service
Vertica
IBM Db2
Hive
ZAP
Teradata Vantage
BigQuery
SAP Warehouse
Amazon Redshift
Snowflake
Panoply
Rubrik
Apache Flume
Azure SQL Data Warehouse
SAP BW/4HANA
Pivotal Greenplum
Dremio
Druid
WhereScape RED
Market Presence
Satisfaction

Learn More About Data Warehouse Software

What is Data Warehouse Software?

Data warehouse technology is used as a storage mechanism, different than traditional database technology. These tools are a key component of modern business intelligence operations, used as centralized repositories for data coming from multiple sources within a company. They can then be used in partnership with ETL tools to normalize and deliver information and data sets. Data warehouse solutions are designed with integration and analysis in mind. They are not designed like other databases to be queried in a variety of different ways. This helps users without knowledge of SQL or other common querying languages to extract information and data from storage.

Most data warehouse technology comes with features for data cleansing and normalization, so data can be stored in a variety of forms. This allows data from sales, marketing, research, and other departments to be stored in their natural forms but cleansed for comparative analysis.

Key Benefits of Data Warehouse Software

  • Centralized data storage and retrieval
  • Cross-departmental data integration
  • Simplified business intelligence delivery
  • Automated and streamlined data management

Why Use Data Warehouse Software?

Data warehouses are a good option for companies with existing, cross-departmental data. These tools are better designed to handle analytics, significantly more than they are for data entry. They can help management and other employees who rely on large amounts of data and in-depth analysis during the decision-making process.

By making information available to users in any role, a data warehouse connected across departments can reduce siloing and poor communication frequently found in growing companies. It can also make it easier for users without technical backgrounds to perform self-service data requests.

Data warehouses can help users of all kinds improve the performance of data storage and usage through a simplified operational process. The tools will also help users create customized workflows that pull in data from multiple sources and present them to users in a digestible way. Overall, they can simplify processes for storage, retrieval, analysis, and visualization.

What are Features of Data Warehouse Software?

Data sources — Data warehouses typically rely on a range of data sources. The data can come from multiple sources, such as spreadsheets, banking systems, and software that ranges from SQL server and relational databases to legacy systems. These features help users consolidate data that they hope to use during the decision-making process.

Data marts — Data warehouses are organized into individual subsections. These segmented storage locations within the data warehouse are typically relevant to an individual team or department.

Scaling — Scaling allows the data warehouse to expand storage capacity and functionality while maintaining balanced workloads. This helps facilitate a growing demand for requests and expanding sets of information.

Autoscaling — While many tools allow administrators to control over scaling storage, autoscaling features help to reduce the manual aspects. This is done with automation tools or bots that scale services and data automatically or on demand.

Data sharing — Data sharing features offer collaborative functionality for sharing queries and data sets. These can be edited or maintained between users and potentially sent to customers or business partners.

Data discovery — Search tools provide the ability to search vast, global data sets to find relevant information. This allows users self-service access and navigation to multiple datasets.

Data modeling — Data modeling tools help users structure and edit data in a manner that enables quick and accurate insight extraction. They also help translate raw data into a more digestible format.

Compliance — Compliance features monitor assets and enforce security policies. Many can also audit assets to support compliance with PII, GDPR, HIPAA, PCI, and other regulatory standards.

Data lakes — A data lake is very similar to a data warehouse, but it typically stores a larger variety of data such as server logs, network activity, or any other non-traditional dataset or historical data that may not be imported into a data warehouse.

Real-time analytics — Real-time analytics features provide information in its most recent state and update users as soon as it changes. This will prevent the need to continually update data sets and simplifies the use of streaming data.

Additional Data Warehouse Software Features

Data warehousing technology has a number of key components that create its overall architecture. A few of those are the database, data sources, data staging areas, presentation tools, and integration tools.

Database — The database storage warehouse itself consists of multiple operational data stores and data marts, where information is stored within the warehouse. Here, the data is somewhat organized; unstructured data remains behind and has not been normalized or cleaned.

Data sources — The data sources provide the database with its information. These sources can be virtually anything containing information, from spreadsheets to other SaaS tools used in the various departments of a company.

Data staging — Data staging areas are used to normalize and structure information. These transitional storage areas are often used during ETL processes where information is transformed, consolidated, aligned, and eventually exported.

Presentation tools — Once data has been cleansed and normalized within the staging area, data will be transferred to data marts for access from users. They may be exported at that point or paired with business intelligence tools for further visualization and analysis.

Integration tools — Integration tools are used both in the collection of information from its various data sources, as well as dispensing information after it has been normalized or modeled. These tools help facilitate the input of information and utilize the data being stored within a data warehouse.

Published: