Star Rating
Languages Supported
Pricing Options

IoT Analytics reviews by real, verified users. Find unbiased ratings on user satisfaction, features, and price based on the most reviews available anywhere.

Best IoT Analytics Software

IoT analytics software allows businesses to analyze and visualize sensor data from internet-connected devices. IoT analytics tools are used to understand the continuous stream of structured, unstructured, and time series data produced by connected devices, so that businesses can understand historical data and predict future outcomes. Companies may utilize IoT analytics solutions to track the performance of machinery, provide predictive maintenance recommendations, and better understand unique data related to their devices such as temperature, motion, and sound. Data analysts can use IoT analytics software to prepare, filter, transform, and drill into sensor data, the same way they would analyze structured data with a business intelligence platform.

To qualify for inclusion in the IoT Analytics category, a product must:

Consume data directly from internet-connected devices, sensors, and time series databases
Support data modeling, blending, and discovery
Allow users to drill down into the data with interactive visualization
Create reports and visualizations based on the data

Compare IoT Analytics Software

G2 takes pride in showing unbiased reviews on user satisfaction in our ratings and reports. We do not allow paid placements in any of our ratings, rankings, or reports. Learn about our scoring methodologies.
Sort By:
Results: 90
Adv. Filters
(27)4.1 out of 5

A fully managed service to easily and securely connect, manage, and ingest data from globally dispersed devices

(12)4.2 out of 5

The open data platform for the Internet of Things

(4)4.0 out of 5

AWS IoT Analytics is a fully-managed service that makes it easy to run sophisticated analytics on massive volumes of IoT data without having to worry about all the cost and complexity typically required to build your own IoT analytics platform.

(213)4.2 out of 5
Entry Level Price:$0 Per host, per month

Datadog is the monitoring, security and analytics platform for developers, IT operations teams, security engineers and business users in the cloud age. The SaaS platform integrates and automates infrastructure monitoring, application performance monitoring and log management to provide unified, real-time observability of our customers' entire technology stack. Datadog is used by organizations of all sizes and across a wide range of industries to enable digital transformation and cloud migration,

(2)4.3 out of 5

Fully managed cloud services and connectivity for IoT solution developers

(2)4.5 out of 5

Agile analytics and reporting tool, which enables business users to make informed decisions from real-time business data

Oracle offers the broadest choice of cloud solutions to simplify IT and power innovation.

(2)4.0 out of 5

ThingsBoard is an open-source IoT platform for data collection, processing, visualization, and device management. It enables device connectivity via industry standard IoT protocols - MQTT, CoAP and HTTP and supports both cloud and on-premises deployments. ThingsBoard combines scalability, fault-tolerance and performance so you will never lose your data.

(1)4.0 out of 5

Apache iota is an effort undergoing incubation at Apache Software Foundation (ASF), sponsored by the Incubator.

(1)5.0 out of 5

AWS IoT SiteWise is a managed service that makes it easy to collect and organize data from industrial equipment at scale. You can easily monitor equipment across your industrial facilities to identify waste, such as breakdown of equipment and processes, production inefficiencies, and defects in products.

(3)4.7 out of 5

Smarter. Faster. Integrable There’s only one IoT platform that can take any digitalized system and develop a smarter, faster and integrable application for all your IoT needs. Axonize has developed a disruptive, multi-app architecture, purpose-built for service providers, and end customers, that enables the deployment of fully customized smart solutions across all applications, verticals and device types, while cutting down application development and smart project launch time from 6-18 month

(3)4.3 out of 5

Ayla's Agile Mobile Application Platform (AMAP) jump-starts the development of iOS and Android apps for controlling IoT devices of any kind.

(1)4.5 out of 5

Bosch IoT Suite provides the foundation for service enablement, both in terms of connecting things to the Internet reliably, securely, cost effectively and at scale and in terms of delivering the backing application logic for value-added services.

(1)3.5 out of 5

Make your products smarter with EVRYTHNG’s IoT Smart Products Platform

(1)5.0 out of 5

GroveStreams is cloud-based Data Analytics Platform for the Internet of Things that provides real-time decision making capabilities to users and devices.

(1)5.0 out of 5

Initial State is an IoT platform for data visualizations. Stream data from your device and services to beautiful cloud-based data visualizations.

(1)3.5 out of 5

Full-featured IoT cloud platform helping connect your devices.

(2)4.8 out of 5

Predix, the operating system for the Industrial Internet, is powering digital industrial businesses that drive the global economy.

(1)4.5 out of 5

For users who need to quickly extract value from their IoT data and investments – in days, not months – SAS Analytics for IoT provides an integrated, business-focused interface that employs a proven way to organize, visualize and act on high volumes of diverse IoT data using a secure, flexible and scalable AI-embedded IoT Analytics platform. This solution’s capabilities are compelling for variety of users including line of business, engineering, IT and data science professional, extending the u

(1)5.0 out of 5

ShiftWorx is FreePoints cloud-based platform for all applications. ShiftWorx allows the monitoring and analysis of production and operations data through applications such as WatchLive and Narrative. ShiftWorx empowers manufacturers to measure, analyze and share production information within the cloud.

(1)5.0 out of 5

Thing+ provides real time dashboard, setting rule, and data analysis.

(1)4.5 out of 5

Visual KPI from Transpara is real-time operations monitoring software. It provides a single view across all of your data sources without moving anything or embarking on a huge project. It supports thousands of industrial (historians, IIoT), business and external data sources and delivers stunning visualizations, KPIs, dashboards, analytics and alerts to any device.

(1)5.0 out of 5

Ubidots provides a platform for makers, developers and companies to easily capture sensor data and turn it into useful information.

0 ratings

AggreGate is an Internet of Things integration platform that enables quick solution for five aims of any IoT application: data acquisition, storage, processing, visualization and enterprise application integration.

0 ratings

AmbienceData is an sensor agnostic end-to-end IoT platform that provides smart sensors, monitoring + data analytics, and machine learning.

0 ratings

Agiledge Solutions harnesses the power of Digitization, IOT, Location based Analytics and Artificial intelligence in its open, scalable and robust platform to provide “intelligent mobility solutions” of various kinds.

0 ratings
Entry Level Price:$0

IoT Client Dashboard is the Live Dashboard companion to visualize numeric and text data of your real time devices connected to AWS IoT to understand the data easily and to take quick actions. IoT Dashboard comprises of all set of essential capabilities that you can explore it to its fullest potential with no cost. You can build real-time, interactive dashboards with dynamic, easy to create widgets in minutes to have powerful visualizations of IoT Data and monitor devices. IoT Dashboard currently

0 ratings

Our patented platform empowers creators to build dynamic digital experiences and channel them through physical items using technologies like NFC, QR and geofencing. Because physical things are made smarter, users can access valuable content with just a tap or scan of a smartphone.

0 ratings

Connect2.me(C2M) is an IoT connector middleware for organizations to build enterprise level IoT/M2M applications.

0 ratings

Ensure the operational health and optimal deployment of IoT sensor devices with machine learning

Learn More About IoT Analytics Software

What You Should Know About IoT Analytics Software

Data analytics is at the core of the Internet of Things (IoT), alongside process automation and asset management. Equipping machinery, office space, transport vehicles, and other things with smart sensors allows organizations to gather more data and glean more insight than ever before. Additionally, it shows how various assets perform and interact with one another. IoT analytics tools help business leaders unlock actionable insights so they can learn about their operations and how to effectively optimize them from every angle.

For a connected business, there might be hundreds or thousands of advanced data sets to ingest each day. This data might include information about how devices are used, working conditions, and prescriptive analytics. The platforms in this fast-growing category offer methods for visualizing, analyzing, organizing, and exploring real-time and historical data generated by disparate IoT devices. Most businesses collect overwhelming amounts of enterprise IoT data. These solutions help determine the most relevant and actionable insights based on connected applications and their corresponding strategies and goals.

Key Benefits of IoT Analytics Software

  • Synthesize data generated by a network of smart devices and IoT sensors
  • Maximize ROI for diverse connected platforms across an organization
  • Shape operational strategies using prescriptive and predictive analytics
  • Identify the most relevant insights for data analytics and translate them into visualizations for easy consumption and analysis
  • Make noteworthy data points from IoT networks searchable and accessible for future reference

Why Use IoT Analytics Software?

Digital transformation is increasingly focused on connected devices, artificial intelligence, and other solutions to make workplaces automated and efficient. Smart devices—from factory machinery to office appliances—can assist with task automation as well as reveal insights about a company, building, employees, and customers. Connected assets help track details related to output, performance, and engagement with software platforms, employees, customers, and other applications connected to a network. IoT analytics solutions empower business users to sort and make sense of these findings. They can learn more about their business operations from the perspective of everyday “things" used across the company, regardless of their cost, size, or function.

Many platforms in this category offer tools to view and convert raw data into shareable formats. In some cases this entails integrations with data visualization software, business intelligence platforms, or other tools used for data analytics. In addition to gathering and preparing valuable data from smart devices, some platforms provide tools for real-time monitoring and reporting, helping users make instant decisions based on momentary events. The real-time streaming of powerful insights helps decision makers adjust and improve processes when these devices are involved, without waiting for lengthy reports.

Thanks to modern edge computing technology, the data gathered on these platforms can be processed and stored on the edge of company networks rather than centralized data warehouses. This helps deliver the right data at a faster rate, without eating into the bandwidth of critical systems. To establish an edge computing scenario for IoT devices and the data they collect, a business must configure edge devices (e.g., routers, integrated access devices or IADs) that control the flow of data. As a company builds out their IoT, analytics platforms help unlock the full potential of these devices without compromising the performance of their assets or IT infrastructures. A number of IoT platforms include analytics solutions or certain reporting features, but dedicated analytics platforms such as those in this category offer deeper insights related to IoT devices, networks, and more related functions in an organization.

Who Uses IoT Analytics Software?

The extensive insights from IoT analytics platforms are valuable to everyone in an organization; these insights influence strategic decisions and help the company improve business outcomes. However, only select individuals are typically trained to use these platforms, understand the data, and communicate the findings. The following teams or individuals are the most likely users of IoT analytics tools.

IoT specialists — As the popularity of IoT grows, so does the need for dedicated experts within an organization. New positions such as IoT architect and IoT engineer are prioritized in thousands of tech-forward businesses. Individuals taking focused courses or training on smart technology and its applications may be recruited by an organization to fill an emerging role. In many cases, managers train existing employees so they can take on new responsibilities related to IoT strategy, such as tracking and comprehension of IoT analytics. The exact job titles of these individuals may vary based on the company’s unique approach to the focus area. Internal IoT specialists likely use platforms in this category. These platforms are essential for maximizing the value of IoT investments and making strategic decisions based on smart object activity. If a company designates one or more employees as IoT specialists, the right analytics tool can make a significant impact and convert IoT activity into actionable insights.

Data scientists and analysts — Depending on the size and scope of a company’s IoT infrastructure, they may not designate team members to be purely focused on IoT. In these cases, they may distribute related tasks and responsibilities to different teams or employees. Analytics experts, such as data analysts and data scientists, might be tasked with observing IoT data and determining appropriate responses to these findings. In addition to their existing analytics software and other business tools they use, data experts utilize IoT analytics platforms to observe, sort, and share unique insights generated by smart devices and any asset configured with an IoT sensor. In some cases, these findings are exported to other platforms for further studying, storing, or sharing. An IoT analytics tool can be essential for consuming the continuous stream of data connected devices produce, such as time-series data and streaming data from critical equipment on a factory line. Additionally, these tools assist with modeling and blending unique data sets for optimal analysis.

IoT development firms — Internet of things developers, or IoT developers, are agencies that specialize in designing and deploying smart applications to use in an organization. These experts offer custom manufacturing of IoT objects and help configure new IoT networks. When working with one of these agencies, a business may need additional assistance with testing, troubleshooting, and tracking devices and IoT activity. IoT development teams might leverage a data analytics platform to visualize the findings of connected objects at any point in the customer experience, so customers can yield desired results with their IoT strategies.

IoT Analytics Software Features

The diverse platforms in this category offer a unique set of tools to assist with IoT data analytics. The following are primary features common in this category of software.

Data models and customization — IoT analytics solutions often come with data models for organizing and standardizing information generated by connected devices. Data modeling is useful for revealing relationships between large sets of unorganized data so users can draw conclusions. With some platforms, users can customize data models or configure entirely new models to fit their particular needs. Models may be useful for observing logical relationships within data sets, and determining how data is retrieved, stored, and formatted.

Ingestion and filtering — IoT sensors enable objects to generate limitless data; this increases based on the portfolio of devices in the network. IoT analytics software usually include filtering and ingestion tools, allowing users to collect the most relevant data points. When determining how data is ingested from IoT devices, users can decide whether specific types of data will be used immediately or filed away for later use. In some cases, users can create dashboards for real-time data streaming including location and what settings are most beneficial at the time.

Event scheduling and alerts — Along with determining which data should be collected, users of IoT analytics tools can determine when to generate reports. Scheduling analytics readings could revolve around a specific time schedule, or particular events. Users might track IoT data in response to alerts such as environmental changes or equipment issues. In other cases, they may simply want to schedule data ingestion for a particular time to make basic observations about patterns and performance. Companies can elect to pull data in a variety of ways and adjust their analytics strategy over the course of their IoT campaign. The platforms in this category offer a number of configurations for reporting to suit these needs.

Potential Issues with IoT Analytics Software

Data gaps — In addition to taking systems offline at unexpected and inconvenient times, random lapses in connectivity cause inconsistencies in time-series data. For example, you may notice several hours between two data points where there would normally be a steady, uninterrupted time line of data. These random gaps can be a source of frustration when it comes to studying and drawing conclusions. To prevent this, IT experts should monitor edge networks and routers and proactively address any issues.

False or corrupted readings — The more end points a company adds to its IoT stack, the greater the potential for transmission issues from an individual sensor. This is an unfortunate risk of any new technology, when it comes to IoT, these possibilities are multiplied by the number of devices they enable. A false reading can happen for a number of reasons, inaccurate data point can corrupt the integrity of data sets. It’s important to perform audits on data and run as many tests as possible to quickly identify issues, before problematic devices contribute additional false readings. Regular software updates are critical to keep distributed smart devices updated, reducing the chances of incomplete or inaccurate data.