Saiba Mais Sobre Plataformas de Ciência de Dados e Aprendizado de Máquina
Quais são os recursos comuns das soluções de ciência de dados e aprendizado de máquina?
A seguir estão alguns recursos principais dentro das plataformas de ciência de dados e aprendizado de máquina que podem ajudar os usuários a preparar dados e treinar, gerenciar e implantar modelos.
Preparação de dados: Os recursos de ingestão de dados permitem que os usuários integrem e ingiram dados de várias fontes internas ou externas, como aplicativos empresariais, bancos de dados ou dispositivos de Internet das Coisas (IoT).
Dados sujos (ou seja, dados incompletos, imprecisos ou incoerentes) são um ponto de partida ruim para a construção de modelos de aprendizado de máquina. Um treinamento de IA ruim gera modelos ruins, que por sua vez geram previsões ruins que podem ser úteis na melhor das hipóteses e prejudiciais na pior. Portanto, as capacidades de preparação de dados permitem a limpeza de dados e a ampliação de dados (em que conjuntos de dados relacionados são aplicados aos dados da empresa) para garantir que a jornada dos dados comece bem.
Treinamento de modelo: A engenharia de características transforma dados brutos em características que melhor representam o problema subjacente para os modelos preditivos. É uma etapa chave na construção de um modelo e melhora a precisão do modelo em dados não vistos.
Construir um modelo requer treiná-lo alimentando-o com dados. Treinar um modelo é o processo de determinar os valores adequados para todos os pesos e o viés a partir dos dados inseridos. Dois métodos principais usados para esse propósito são aprendizado supervisionado e aprendizado não supervisionado. O primeiro é um método em que a entrada é rotulada, enquanto o segundo lida com dados não rotulados.
Gerenciamento de modelo: O processo não termina quando o modelo é lançado. As empresas devem monitorar e gerenciar seus modelos para garantir que eles permaneçam precisos e atualizados. A comparação de modelos permite que os usuários comparem rapidamente modelos com uma linha de base ou com um resultado anterior para determinar a qualidade do modelo construído. Muitas dessas plataformas também possuem ferramentas para rastrear métricas, como precisão e perda.
Implantação de modelo: A implantação de modelos de aprendizado de máquina é o processo de torná-los disponíveis em ambientes de produção, onde fornecem previsões para outros sistemas de software. Métodos de implantação incluem APIs REST, GUI para análise sob demanda e mais.
Quem usa produtos de ciência de dados e aprendizado de máquina?
Os cientistas de dados estão em alta demanda, mas há escassez de profissionais qualificados. O conjunto de habilidades é variado e vasto (por exemplo, há necessidade de entender vários algoritmos, matemática avançada, habilidades de programação e mais). Portanto, tais profissionais são difíceis de encontrar e exigem alta remuneração. Para enfrentar esse problema, as plataformas estão cada vez mais incluindo recursos que facilitam o desenvolvimento de soluções de IA, como capacidades de arrastar e soltar e algoritmos pré-construídos.
Além disso, para que os projetos de ciência de dados sejam iniciados, é fundamental que a empresa como um todo compre a ideia. As plataformas mais robustas fornecem recursos que ajudam os usuários não técnicos a entender os modelos, os dados envolvidos e os aspectos do negócio que foram impactados.
Engenheiros de dados: Com capacidades robustas de integração de dados, engenheiros de dados encarregados do design, integração e gerenciamento de dados usam essas plataformas para colaborar com cientistas de dados e outros interessados dentro da organização.
Cidadãos cientistas de dados: Com o aumento de recursos mais fáceis de usar, cidadãos cientistas de dados, que não são treinados profissionalmente, mas desenvolveram habilidades em dados, estão cada vez mais recorrendo a plataformas de ciência de dados e aprendizado de máquina para trazer IA para suas organizações.
Cientistas de dados profissionais: Cientistas de dados especialistas usam essas soluções para escalar operações de ciência de dados ao longo do ciclo de vida, simplificando o processo de experimentação até a implantação e acelerando a exploração e preparação de dados, bem como o desenvolvimento e treinamento de modelos.
Interessados nos negócios: Interessados nos negócios usam essas ferramentas para obter clareza sobre os modelos de aprendizado de máquina e entender melhor como eles se relacionam com o negócio como um todo e suas operações.
Como escolher a melhor plataforma de ciência de dados e aprendizado de máquina (DSML)
Coleta de requisitos (RFI/RFP) para plataformas DSML
Se uma empresa está apenas começando e procurando comprar sua primeira plataforma de ciência de dados e aprendizado de máquina, ou onde quer que esteja em seu processo de compra, o g2.com pode ajudar a selecionar a melhor opção.
O primeiro passo no processo de compra deve envolver uma análise cuidadosa dos dados da empresa. Como uma parte fundamental da jornada de ciência de dados envolve engenharia de dados (ou seja, coleta e análise de dados), as empresas devem garantir que a qualidade de seus dados seja alta e que a plataforma em questão possa lidar adequadamente com seus dados, tanto em termos de formato quanto de volume. Se a empresa acumulou muitos dados, precisa procurar uma solução que possa crescer com a organização. Os usuários devem pensar nos pontos problemáticos e anotá-los; esses devem ser usados para ajudar a criar uma lista de critérios. Além disso, o comprador deve determinar o número de funcionários que precisarão usar este software, pois isso determina o número de licenças que provavelmente comprarão.
Ter uma visão holística do negócio e identificar pontos problemáticos pode ajudar a equipe a criar uma lista de critérios. A lista serve como um guia detalhado que inclui recursos necessários e desejáveis, incluindo orçamento, recursos, número de usuários, integrações, requisitos de segurança, soluções em nuvem ou no local e mais.
Dependendo do escopo da implantação, produzir um RFI, uma lista de uma página com alguns pontos descrevendo o que é necessário de uma plataforma de ciência de dados pode ser útil.
Comparar produtos DSML
Criar uma lista longa
Desde atender às necessidades de funcionalidade de negócios até a implementação, as avaliações de fornecedores são uma parte essencial do processo de compra de software. Para facilitar a comparação, após todas as demonstrações serem concluídas, é útil preparar uma lista consistente de perguntas sobre necessidades e preocupações específicas para fazer a cada fornecedor.
Criar uma lista curta
A partir da lista longa de fornecedores, é útil reduzir a lista de fornecedores e chegar a uma lista mais curta de candidatos, de preferência não mais do que três a cinco. Com essa lista em mãos, as empresas podem produzir uma matriz para comparar os recursos e preços das várias soluções.
Conduzir demonstrações
Para garantir uma comparação completa, o usuário deve demonstrar cada solução na lista curta usando o mesmo caso de uso e conjuntos de dados. Isso permitirá que a empresa avalie de forma semelhante e veja como cada fornecedor se compara à concorrência.
Seleção de plataformas DSML
Escolher uma equipe de seleção
Antes de começar, é crucial criar uma equipe vencedora que trabalhará junta durante todo o processo, desde a identificação de pontos problemáticos até a implementação. A equipe de seleção de software deve consistir em membros da organização que tenham os interesses, habilidades e tempo certos para participar desse processo. Um bom ponto de partida é ter de três a cinco pessoas que ocupem funções como o principal tomador de decisões, gerente de projeto, proprietário do processo, proprietário do sistema ou especialista em assuntos de pessoal, bem como um líder técnico, administrador de TI ou administrador de segurança. Em empresas menores, a equipe de seleção de fornecedores pode ser menor, com menos participantes, multitarefas e assumindo mais responsabilidades.
Negociação
Só porque algo está escrito na página de preços de uma empresa não significa que seja fixo (embora algumas empresas não cedam). É imperativo abrir uma conversa sobre preços e licenciamento. Por exemplo, o fornecedor pode estar disposto a dar um desconto para contratos de vários anos ou recomendar o produto a outros.
Decisão final
Após esta etapa, e antes de se comprometer totalmente, é recomendável realizar um teste ou programa piloto para testar a adoção com um pequeno grupo de usuários. Se a ferramenta for bem utilizada e bem recebida, o comprador pode ter confiança de que a seleção foi correta. Caso contrário, pode ser hora de voltar à prancheta.
Implementação de plataformas de ciência de dados e aprendizado de máquina
Como as ferramentas de software DSML são implementadas?
A implementação difere drasticamente dependendo da complexidade e escala dos dados. Em organizações com grandes quantidades de dados em fontes díspares (por exemplo, aplicativos, bancos de dados, etc.), muitas vezes é sábio utilizar uma parte externa, seja um especialista em implementação do fornecedor ou uma consultoria terceirizada. Com vasta experiência, eles podem ajudar as empresas a entender como conectar e consolidar suas fontes de dados e como usar o software de forma eficiente e eficaz.
Quem é responsável pela implementação da plataforma DSML?
Pode ser necessário muitas pessoas ou equipes para implantar adequadamente uma plataforma de ciência de dados, incluindo engenheiros de dados, cientistas de dados e engenheiros de software. Isso ocorre porque, como mencionado, os dados podem atravessar equipes e funções. Como resultado, uma pessoa ou mesmo uma equipe raramente tem uma compreensão completa de todos os ativos de dados de uma empresa. Com uma equipe multifuncional em vigor, uma empresa pode começar a juntar seus dados e iniciar a jornada de ciência de dados, começando com a preparação e gerenciamento adequados de dados.
Qual é o processo de implementação de produtos de ciência de dados e aprendizado de máquina?
Em termos de implementação, é típico que a plataforma seja implantada de forma limitada e posteriormente expandida de forma mais ampla. Por exemplo, uma marca de varejo pode decidir testar A/B o uso de um algoritmo de personalização para um número limitado de visitantes em seu site para entender melhor como está funcionando. Se a implantação for bem-sucedida, a equipe de ciência de dados pode apresentar suas descobertas à equipe de liderança (que pode ser o CTO, dependendo da estrutura da empresa).
Se a implantação não for bem-sucedida, a equipe pode voltar à prancheta para determinar o que deu errado. Isso envolverá examinar os dados de treinamento e os algoritmos usados. Se tentarem novamente, mas nada parecer bem-sucedido (ou seja, o resultado é falho ou não há melhoria nas previsões), a empresa pode precisar voltar ao básico e revisar seus dados.
Quando você deve implementar ferramentas DSML?
Como mencionado anteriormente, a engenharia de dados, que envolve a preparação e coleta de dados, é um recurso fundamental dos projetos de ciência de dados. Portanto, as empresas devem fazer da organização de seus dados sua principal prioridade, garantindo que não haja registros duplicados ou campos desalinhados. Embora isso pareça básico, não é. Dados falhos como entrada resultarão em dados falhos como saída.
Tendências de plataformas de ciência de dados e aprendizado de máquina
AutoML
O AutoML ajuda a automatizar muitas tarefas necessárias para desenvolver aplicativos de IA e aprendizado de máquina. Os usos incluem preparação automática de dados, engenharia de características automatizada, fornecimento de explicabilidade para modelos e mais.
IA embutida
A funcionalidade de aprendizado de máquina e aprendizado profundo está cada vez mais embutida em quase todos os tipos de software, independentemente de o usuário estar ciente disso. Usar IA embutida em software como CRM, automação de marketing e soluções de análise nos permite simplificar processos, automatizar certas tarefas e obter uma vantagem competitiva com capacidades preditivas. A IA embutida pode gradualmente ganhar força nos próximos anos e pode fazê-lo da mesma forma que a implantação em nuvem e as capacidades móveis fizeram na última década. Eventualmente, os fornecedores podem não precisar destacar os benefícios de seus produtos com aprendizado de máquina, pois isso pode ser simplesmente assumido e esperado.
Aprendizado de máquina como serviço (MLaaS)
O ambiente de software mudou para uma estrutura de microsserviços mais granular, particularmente para necessidades de operações de desenvolvimento. Além disso, o boom dos serviços de infraestrutura de nuvem pública permitiu que grandes empresas oferecessem serviços de desenvolvimento e infraestrutura para outras empresas com um modelo de pagamento conforme o uso. O software de IA não é diferente, pois as mesmas empresas fornecem MLaaS para outras empresas.
Os desenvolvedores rapidamente aproveitam esses algoritmos e soluções pré-construídos alimentando-os com seus dados para obter insights. Usar sistemas construídos por empresas de grande porte ajuda pequenas empresas a economizar tempo, recursos e dinheiro, eliminando a necessidade de contratar desenvolvedores de aprendizado de máquina qualificados. O MLaaS crescerá ainda mais à medida que as empresas continuarem a depender desses microsserviços e a necessidade de IA aumentar.
Explicabilidade
Quando se trata de algoritmos de aprendizado de máquina, especialmente aprendizado profundo, pode ser difícil explicar como eles chegaram a certas conclusões. A IA explicável, também conhecida como XAI, é o processo pelo qual o processo de tomada de decisão dos algoritmos é tornado transparente e compreensível para os humanos. A transparência é o princípio mais prevalente na literatura atual sobre ética em IA, e, portanto, a explicabilidade, um subconjunto da transparência, torna-se crucial. As plataformas de ciência de dados e aprendizado de máquina estão cada vez mais incluindo ferramentas para explicabilidade, o que ajuda os usuários a incorporar explicabilidade em seus modelos e ajudá-los a atender aos requisitos de explicabilidade de dados em legislações como a lei de privacidade da União Europeia e o GDPR.