Mehr über Datenwissenschafts- und maschinelles Lernen-Plattformen erfahren
Was sind die gemeinsamen Merkmale von Datenwissenschafts- und maschinelles Lernen-Lösungen?
Die folgenden sind einige Kernmerkmale innerhalb von Datenwissenschafts- und maschinelles Lernen-Plattformen, die Benutzern helfen können, Daten vorzubereiten und Modelle zu trainieren, zu verwalten und bereitzustellen.
Datenvorbereitung: Datenaufnahmefunktionen ermöglichen es Benutzern, Daten aus verschiedenen internen oder externen Quellen zu integrieren und aufzunehmen, wie Unternehmensanwendungen, Datenbanken oder Internet of Things (IoT)-Geräte.
Unsaubere Daten (d. h. unvollständige, ungenaue oder inkohärente Daten) sind ein No-Go für den Aufbau von Modellen des maschinellen Lernens. Schlechte KI-Trainings führen zu schlechten Modellen, die wiederum zu schlechten Vorhersagen führen, die bestenfalls nützlich und schlimmstenfalls schädlich sein können. Daher ermöglichen Datenvorbereitungsfunktionen die Datenbereinigung und Datenanreicherung (bei der verwandte Datensätze auf Unternehmensdaten angewendet werden), um sicherzustellen, dass die Datenreise gut beginnt.
Modelltraining: Feature Engineering transformiert Rohdaten in Merkmale, die das zugrunde liegende Problem für die prädiktiven Modelle besser darstellen. Es ist ein entscheidender Schritt beim Aufbau eines Modells und verbessert die Modellgenauigkeit bei ungesehenen Daten.
Der Aufbau eines Modells erfordert das Training, indem es mit Daten gefüttert wird. Das Training eines Modells ist der Prozess der Bestimmung der richtigen Werte für alle Gewichte und den Bias aus den eingegebenen Daten. Zwei wichtige Methoden, die zu diesem Zweck verwendet werden, sind überwachtes Lernen und unüberwachtes Lernen. Ersteres ist eine Methode, bei der der Input beschriftet ist, während letzteres mit unbeschrifteten Daten arbeitet.
Modellmanagement: Der Prozess endet nicht, sobald das Modell veröffentlicht ist. Unternehmen müssen ihre Modelle überwachen und verwalten, um sicherzustellen, dass sie genau und aktuell bleiben. Der Modellvergleich ermöglicht es Benutzern, Modelle schnell mit einem Basiswert oder einem vorherigen Ergebnis zu vergleichen, um die Qualität des erstellten Modells zu bestimmen. Viele dieser Plattformen verfügen auch über Tools zur Verfolgung von Metriken wie Genauigkeit und Verlust.
Modellbereitstellung: Die Bereitstellung von Modellen des maschinellen Lernens ist der Prozess, sie in Produktionsumgebungen verfügbar zu machen, wo sie Vorhersagen für andere Softwaresysteme liefern. Methoden der Bereitstellung umfassen REST-APIs, GUI für On-Demand-Analysen und mehr.
Wer nutzt Datenwissenschafts- und maschinelles Lernen-Produkte?
Datenwissenschaftler sind sehr gefragt, aber es gibt einen Mangel an qualifizierten Fachleuten. Das Skillset ist vielfältig und umfangreich (zum Beispiel gibt es einen Bedarf, verschiedene Algorithmen, fortgeschrittene Mathematik, Programmierkenntnisse und mehr zu verstehen). Daher sind solche Fachleute schwer zu finden und verlangen hohe Vergütungen. Um dieses Problem zu lösen, beinhalten Plattformen zunehmend Funktionen, die es einfacher machen, KI-Lösungen zu entwickeln, wie Drag-and-Drop-Fähigkeiten und vorgefertigte Algorithmen.
Darüber hinaus ist es für den Start von Datenwissenschaftsprojekten entscheidend, dass das breitere Geschäft sie unterstützt. Die robusteren Plattformen bieten Ressourcen, die nicht-technischen Benutzern helfen, die Modelle, die beteiligten Daten und die Aspekte des Geschäfts, die betroffen sind, zu verstehen.
Dateningenieure: Mit robusten Datenintegrationsfähigkeiten nutzen Dateningenieure, die mit dem Design, der Integration und dem Management von Daten beauftragt sind, diese Plattformen, um mit Datenwissenschaftlern und anderen Interessierten innerhalb der Organisation zusammenzuarbeiten.
Citizen Data Scientists: Mit dem Aufstieg benutzerfreundlicherer Funktionen wenden sich Citizen Data Scientists, die nicht professionell ausgebildet sind, aber Datenfähigkeiten entwickelt haben, zunehmend Datenwissenschafts- und maschinelles Lernen-Plattformen zu, um KI in ihre Organisationen zu bringen.
Professionelle Datenwissenschaftler: Experten-Datenwissenschaftler nutzen diese Lösungen, um Datenwissenschaftsoperationen über den gesamten Lebenszyklus zu skalieren, den Prozess vom Experimentieren bis zur Bereitstellung zu vereinfachen und die Datenexploration und -vorbereitung sowie die Modellentwicklung und -training zu beschleunigen.
Geschäftsinteressierte: Geschäftsinteressierte nutzen diese Tools, um Klarheit über die Modelle des maschinellen Lernens zu gewinnen und besser zu verstehen, wie sie mit dem breiteren Geschäft und seinen Operationen zusammenhängen.
Wie wählt man die beste Datenwissenschafts- und maschinelles Lernen (DSML)-Plattform aus?
Anforderungserhebung (RFI/RFP) für DSML-Plattformen
Wenn ein Unternehmen gerade erst anfängt und seine erste Datenwissenschafts- und maschinelles Lernen-Plattform kaufen möchte, oder wo auch immer ein Unternehmen in seinem Kaufprozess steht, kann g2.com helfen, die beste Option auszuwählen.
Der erste Schritt im Kaufprozess muss eine sorgfältige Betrachtung der Unternehmensdaten beinhalten. Da ein wesentlicher Teil der Datenwissenschaftsreise die Datenverarbeitung (d. h. Datensammlung und -analyse) umfasst, müssen Unternehmen sicherstellen, dass ihre Datenqualität hoch ist und die betreffende Plattform ihre Daten sowohl in Bezug auf Format als auch Volumen angemessen handhaben kann. Wenn das Unternehmen viele Daten gesammelt hat, muss es nach einer Lösung suchen, die mit der Organisation wachsen kann. Benutzer sollten über die Schmerzpunkte nachdenken und sie aufschreiben; diese sollten verwendet werden, um eine Checkliste von Kriterien zu erstellen. Darüber hinaus muss der Käufer die Anzahl der Mitarbeiter bestimmen, die diese Software nutzen müssen, da dies die Anzahl der Lizenzen bestimmt, die sie wahrscheinlich kaufen werden.
Ein ganzheitlicher Überblick über das Geschäft und die Identifizierung von Schmerzpunkten kann dem Team helfen, in die Erstellung einer Checkliste von Kriterien zu springen. Die Checkliste dient als detaillierter Leitfaden, der sowohl notwendige als auch wünschenswerte Funktionen umfasst, einschließlich Budget, Funktionen, Anzahl der Benutzer, Integrationen, Sicherheitsanforderungen, Cloud- oder On-Premises-Lösungen und mehr.
Abhängig vom Bereitstellungsumfang kann es hilfreich sein, ein RFI zu erstellen, eine einseitige Liste mit einigen Aufzählungspunkten, die beschreiben, was von einer Datenwissenschaftsplattform benötigt wird.
Vergleichen Sie DSML-Produkte
Erstellen Sie eine Longlist
Von der Erfüllung der Geschäftsanforderungen bis zur Implementierung sind Anbieterevaluierungen ein wesentlicher Bestandteil des Softwarekaufprozesses. Für einen einfachen Vergleich, nachdem alle Demos abgeschlossen sind, hilft es, eine konsistente Liste von Fragen zu spezifischen Bedürfnissen und Bedenken zu erstellen, die jedem Anbieter gestellt werden sollen.
Erstellen Sie eine Shortlist
Aus der Longlist der Anbieter ist es hilfreich, die Liste der Anbieter einzugrenzen und eine kürzere Liste von Kandidaten zu erstellen, vorzugsweise nicht mehr als drei bis fünf. Mit dieser Liste in der Hand können Unternehmen eine Matrix erstellen, um die Funktionen und Preise der verschiedenen Lösungen zu vergleichen.
Führen Sie Demos durch
Um einen gründlichen Vergleich sicherzustellen, sollte der Benutzer jede Lösung auf der Shortlist mit demselben Anwendungsfall und Datensätzen demonstrieren. Dies ermöglicht es dem Unternehmen, gleichwertig zu bewerten und zu sehen, wie jeder Anbieter im Vergleich zur Konkurrenz abschneidet.
Auswahl von DSML-Plattformen
Wählen Sie ein Auswahlteam
Bevor Sie beginnen, ist es entscheidend, ein Gewinnerteam zu erstellen, das während des gesamten Prozesses zusammenarbeitet, von der Identifizierung von Schmerzpunkten bis zur Implementierung. Das Softwareauswahlteam sollte aus Mitgliedern der Organisation bestehen, die die richtigen Interessen, Fähigkeiten und die Zeit haben, an diesem Prozess teilzunehmen. Ein guter Ausgangspunkt ist es, drei bis fünf Personen zu haben, die Rollen wie den Hauptentscheidungsträger, Projektmanager, Prozessverantwortlichen, Systemverantwortlichen oder Personalexperten sowie einen technischen Leiter, IT-Administrator oder Sicherheitsadministrator ausfüllen. In kleineren Unternehmen kann das Anbieterauswahlteam kleiner sein, mit weniger Teilnehmern, die mehrere Aufgaben übernehmen und mehr Verantwortung tragen.
Verhandlung
Nur weil etwas auf der Preisseite eines Unternehmens steht, bedeutet das nicht, dass es festgelegt ist (obwohl einige Unternehmen nicht nachgeben werden). Es ist wichtig, ein Gespräch über Preisgestaltung und Lizenzierung zu eröffnen. Zum Beispiel könnte der Anbieter bereit sein, einen Rabatt für mehrjährige Verträge zu gewähren oder das Produkt anderen zu empfehlen.
Endgültige Entscheidung
Nach dieser Phase und bevor man sich vollständig engagiert, wird empfohlen, einen Testlauf oder ein Pilotprogramm durchzuführen, um die Akzeptanz mit einer kleinen Stichprobe von Benutzern zu testen. Wenn das Tool gut genutzt und gut angenommen wird, kann der Käufer sicher sein, dass die Auswahl korrekt war. Wenn nicht, könnte es an der Zeit sein, zurück ans Reißbrett zu gehen.
Kosten von Datenwissenschafts- und maschinelles Lernen-Plattformen
Wie oben erwähnt, sind Datenwissenschafts- und maschinelles Lernen-Plattformen sowohl als On-Premises- als auch als Cloud-Lösungen verfügbar. Die Preisgestaltung zwischen den beiden kann unterschiedlich sein, wobei erstere oft mehr anfängliche Infrastrukturkosten erfordert.
Wie bei jeder Software sind diese Plattformen häufig in verschiedenen Stufen verfügbar, wobei die eher einsteigerfreundlichen Lösungen weniger kosten als die auf Unternehmensebene. Erstere haben häufig nicht so viele Funktionen und können Nutzungslimits haben. DSML-Anbieter können eine gestufte Preisgestaltung haben, bei der der Preis auf die Unternehmensgröße der Benutzer, die Anzahl der Benutzer oder beides zugeschnitten ist. Diese Preisstrategie kann mit einem gewissen Maß an Unterstützung kommen, die entweder unbegrenzt oder auf eine bestimmte Anzahl von Stunden pro Abrechnungszyklus begrenzt sein kann.
Einmal eingerichtet, erfordern sie oft keine signifikanten Wartungskosten, insbesondere wenn sie in der Cloud bereitgestellt werden. Da diese Plattformen oft mit vielen zusätzlichen Funktionen kommen, können Unternehmen, die den Wert ihrer Software maximieren möchten, Drittberater beauftragen, um ihnen zu helfen, Erkenntnisse aus ihren Daten zu gewinnen und das Beste aus der Software herauszuholen.
Return on Investment (ROI)
Unternehmen entscheiden sich für den Einsatz von Datenwissenschafts- und maschinelles Lernen-Plattformen mit dem Ziel, einen gewissen ROI zu erzielen. Da sie versuchen, die Verluste, die sie für die Software ausgegeben haben, wieder hereinzuholen, ist es entscheidend, die damit verbundenen Kosten zu verstehen. Wie oben erwähnt, werden diese Plattformen typischerweise pro Benutzer abgerechnet, was manchmal gestaffelt ist, abhängig von der Unternehmensgröße. Mehr Benutzer bedeuten in der Regel mehr Lizenzen, was mehr Geld bedeutet.
Benutzer müssen berücksichtigen, wie viel ausgegeben wird und das mit dem vergleichen, was gewonnen wird, sowohl in Bezug auf Effizienz als auch auf Umsatz. Daher können Unternehmen Prozesse vor und nach der Bereitstellung der Software vergleichen, um besser zu verstehen, wie Prozesse verbessert wurden und wie viel Zeit gespart wurde. Sie können sogar eine Fallstudie (entweder für interne oder externe Zwecke) erstellen, um die Gewinne zu demonstrieren, die sie durch die Nutzung der Plattform erzielt haben.
Implementierung von Datenwissenschafts- und maschinelles Lernen-Plattformen
Wie werden DSML-Softwaretools implementiert?
Die Implementierung unterscheidet sich drastisch je nach Komplexität und Umfang der Daten. In Organisationen mit großen Datenmengen aus unterschiedlichen Quellen (z. B. Anwendungen, Datenbanken usw.) ist es oft ratsam, eine externe Partei zu nutzen, sei es ein Implementierungsspezialist des Anbieters oder eine Drittberatung. Mit umfangreicher Erfahrung können sie Unternehmen helfen zu verstehen, wie sie ihre Datenquellen verbinden und konsolidieren und die Software effizient und effektiv nutzen können.
Wer ist für die Implementierung der DSML-Plattform verantwortlich?
Es kann viele Personen oder Teams erfordern, um eine Datenwissenschaftsplattform ordnungsgemäß bereitzustellen, einschließlich Dateningenieuren, Datenwissenschaftlern und Softwareingenieuren. Dies liegt daran, dass, wie bereits erwähnt, Daten über Teams und Funktionen hinweg geschnitten werden können. Infolgedessen hat selten eine Person oder sogar ein Team ein vollständiges Verständnis aller Datenressourcen eines Unternehmens. Mit einem funktionsübergreifenden Team an Ort und Stelle kann ein Unternehmen beginnen, seine Daten zusammenzufügen und die Reise der Datenwissenschaft zu beginnen, beginnend mit der ordnungsgemäßen Datenvorbereitung und -verwaltung.
Was ist der Implementierungsprozess für Datenwissenschafts- und maschinelles Lernen-Produkte?
In Bezug auf die Implementierung ist es typisch, dass die Plattform in begrenztem Umfang bereitgestellt und anschließend in größerem Umfang ausgerollt wird. Zum Beispiel könnte eine Einzelhandelsmarke entscheiden, ihre Verwendung eines Personalisierungsalgorithmus für eine begrenzte Anzahl von Besuchern ihrer Website zu A/B-testen, um besser zu verstehen, wie er funktioniert. Wenn die Bereitstellung erfolgreich ist, kann das Datenwissenschaftsteam seine Ergebnisse dem Führungsteam (das je nach Struktur des Unternehmens der CTO sein könnte) präsentieren.
Wenn die Bereitstellung nicht erfolgreich ist, kann das Team zurück ans Reißbrett gehen, um festzustellen, was schief gelaufen ist. Dies wird die Untersuchung der Trainingsdaten und der verwendeten Algorithmen beinhalten. Wenn sie es erneut versuchen und nichts scheint erfolgreich zu sein (d. h. das Ergebnis ist fehlerhaft oder es gibt keine Verbesserung der Vorhersagen), muss das Unternehmen möglicherweise zurück zu den Grundlagen gehen und seine Daten überprüfen.
Wann sollten Sie DSML-Tools implementieren?
Wie bereits erwähnt, ist die Datenverarbeitung, die die Vorbereitung und Sammlung von Daten umfasst, ein grundlegendes Merkmal von Datenwissenschaftsprojekten. Daher müssen Unternehmen sicherstellen, dass ihre Daten in Ordnung sind, indem sie sicherstellen, dass es keine doppelten Datensätze oder nicht übereinstimmende Felder gibt. Obwohl dies einfach klingt, ist es alles andere als das. Fehlerhafte Daten als Eingabe führen zu fehlerhaften Daten als Ausgabe.
Trends bei Datenwissenschafts- und maschinelles Lernen-Plattformen
AutoML
AutoML hilft, viele Aufgaben zu automatisieren, die zur Entwicklung von KI- und maschinelles Lernen-Anwendungen erforderlich sind. Anwendungen umfassen automatische Datenvorbereitung, automatisiertes Feature Engineering, Bereitstellung von Erklärbarkeit für Modelle und mehr.
Eingebettete KI
Maschinen- und Deep-Learning-Funktionalität wird zunehmend in fast alle Arten von Software eingebettet, unabhängig davon, ob der Benutzer sich dessen bewusst ist oder nicht. Die Verwendung von eingebetteter KI in Software wie CRM, Marketing-Automatisierung und Analysetools ermöglicht es uns, Prozesse zu rationalisieren, bestimmte Aufgaben zu automatisieren und einen Wettbewerbsvorteil mit prädiktiven Fähigkeiten zu erlangen. Eingebettete KI könnte in den kommenden Jahren allmählich zunehmen und könnte dies auf die gleiche Weise tun, wie Cloud-Bereitstellung und mobile Fähigkeiten im letzten Jahrzehnt zugenommen haben. Schließlich müssen Anbieter möglicherweise nicht mehr die Vorteile ihrer Produkte durch maschinelles Lernen hervorheben, da dies einfach angenommen und erwartet werden könnte.
Maschinelles Lernen als Dienstleistung (MLaaS)
Die Softwareumgebung hat sich zu einer granulareren Microservices-Struktur entwickelt, insbesondere für Entwicklungsoperationen. Darüber hinaus hat der Boom der öffentlichen Cloud-Infrastrukturdienste es großen Unternehmen ermöglicht, Entwicklungs- und Infrastrukturdienste für andere Unternehmen mit einem Pay-as-you-use-Modell anzubieten. KI-Software ist da keine Ausnahme, da dieselben Unternehmen MLaaS für andere Unternehmen anbieten.
Entwickler nutzen schnell diese vorgefertigten Algorithmen und Lösungen, indem sie ihnen ihre Daten zuführen, um Erkenntnisse zu gewinnen. Die Nutzung von Systemen, die von Unternehmensunternehmen entwickelt wurden, hilft kleinen Unternehmen, Zeit, Ressourcen und Geld zu sparen, indem sie die Notwendigkeit eliminieren, qualifizierte Entwickler des maschinellen Lernens einzustellen. MLaaS wird weiter wachsen, da Unternehmen weiterhin auf diese Microservices angewiesen sind und der Bedarf an KI zunimmt.
Erklärbarkeit
Wenn es um Algorithmen des maschinellen Lernens geht, insbesondere um Deep Learning, kann es schwierig sein zu erklären, wie sie zu bestimmten Schlussfolgerungen gekommen sind. Erklärbare KI, auch bekannt als XAI, ist der Prozess, bei dem der Entscheidungsprozess von Algorithmen transparent und für Menschen verständlich gemacht wird. Transparenz ist das am häufigsten vorkommende Prinzip in der aktuellen KI-Ethik-Literatur, und daher wird Erklärbarkeit, ein Teilbereich der Transparenz, entscheidend. Datenwissenschafts- und maschinelles Lernen-Plattformen beinhalten zunehmend Tools zur Erklärbarkeit, die Benutzern helfen, Erklärbarkeit in ihre Modelle einzubauen und ihnen helfen, die Anforderungen an die Datenerklärbarkeit in Gesetzen wie dem Datenschutzgesetz der Europäischen Union und der DSGVO zu erfüllen.