Entdecken Sie die besten Alternativen zu SAS Visual Data Mining and Machine Learning für Benutzer, die neue Softwarefunktionen benötigen oder verschiedene Lösungen ausprobieren möchten. Datenwissenschafts- und maschinelles Lernen-Plattformen ist eine weit verbreitete Technologie, und viele Menschen suchen nach beliebt, hohe Qualität-Softwarelösungen mit drag-and-drop, vorgefertigte algorithmen, und modell-training. Andere wichtige Faktoren, die bei der Recherche von Alternativen zu SAS Visual Data Mining and Machine Learning zu berücksichtigen sind, beinhalten features und analytics. Die beste Gesamtalternative zu SAS Visual Data Mining and Machine Learning ist Altair AI Studio. Andere ähnliche Apps wie SAS Visual Data Mining and Machine Learning sind Alteryx, Vertex AI, Posit, und IBM Cognos Analytics. SAS Visual Data Mining and Machine Learning Alternativen finden Sie in Datenwissenschafts- und maschinelles Lernen-Plattformen, aber sie könnten auch in Analyseplattformen oder Statistische Analysesoftware sein.
RapidMiner ist eine leistungsstarke, benutzerfreundliche und intuitive grafische Benutzeroberfläche für die Gestaltung analytischer Prozesse. Die Weisheit der Vielen und Empfehlungen aus der RapidMiner-Community können Ihren Weg leiten. Und Sie können Ihren R- und Python-Code problemlos wiederverwenden.
Alteryx treibt transformative Geschäftsergebnisse durch vereinheitlichte Analysen, Datenwissenschaft und Prozessautomatisierung voran.
Vertex AI ist eine verwaltete Plattform für maschinelles Lernen (ML), die Ihnen hilft, ML-Modelle schneller und einfacher zu erstellen, zu trainieren und bereitzustellen. Sie umfasst eine einheitliche Benutzeroberfläche für den gesamten ML-Workflow sowie eine Vielzahl von Tools und Diensten, die Sie bei jedem Schritt des Prozesses unterstützen. Vertex AI Workbench ist eine cloudbasierte IDE, die in Vertex AI enthalten ist. Sie erleichtert die Entwicklung und das Debuggen von ML-Code. Sie bietet eine Vielzahl von Funktionen, die Sie bei Ihrem ML-Workflow unterstützen, wie z.B. Codevervollständigung, Linting und Debugging. Vertex AI und Vertex AI Workbench sind eine leistungsstarke Kombination, die Ihnen helfen kann, Ihre ML-Entwicklung zu beschleunigen. Mit Vertex AI können Sie sich auf den Aufbau und das Training Ihrer Modelle konzentrieren, während Vertex AI Workbench den Rest übernimmt. Dies gibt Ihnen die Freiheit, produktiver und kreativer zu sein, und hilft Ihnen, Ihre Modelle schneller in die Produktion zu bringen. Wenn Sie nach einer leistungsstarken und benutzerfreundlichen ML-Plattform suchen, ist Vertex AI eine großartige Option. Mit Vertex AI können Sie ML-Modelle schneller und einfacher als je zuvor erstellen, trainieren und bereitstellen.
IBM® Cognos® Analytics bietet intelligentere Self-Service-Funktionen, sodass Sie schnell Einblicke gewinnen und darauf reagieren können. Die Lösung befähigt Geschäftsanwender, Dashboards und Berichte eigenständig zu erstellen und zu personalisieren - während sie der IT eine skalierbare Lösung bietet, die vor Ort oder in der Cloud verfügbar ist.
MATLAB ist eine hochentwickelte Programmier- und numerische Rechenumgebung, die von Ingenieuren und Wissenschaftlern weit verbreitet für Datenanalyse, Algorithmusentwicklung und Systemmodellierung genutzt wird. Es bietet eine Desktop-Umgebung, die für iterative Analyse- und Designprozesse optimiert ist, zusammen mit einer Programmiersprache, die Matrix- und Array-Mathematik direkt ausdrückt. Die Live-Editor-Funktion ermöglicht es Benutzern, Skripte zu erstellen, die Code, Ausgaben und formatierten Text in einem ausführbaren Notizbuch integrieren. Hauptmerkmale und Funktionalität: - Datenanalyse: Werkzeuge zum Erkunden, Modellieren und Analysieren von Daten. - Grafiken: Funktionen zur Visualisierung und Erkundung von Daten durch verschiedene Diagramme und Charts. - Programmierung: Möglichkeiten zur Erstellung von Skripten, Funktionen und Klassen für angepasste Workflows. - App-Entwicklung: Einrichtungen zur Entwicklung von Desktop- und Webanwendungen. - Externe Sprachschnittstellen: Integration mit Sprachen wie Python, C/C++, Fortran und Java. - Hardware-Konnektivität: Unterstützung für die Verbindung von MATLAB mit verschiedenen Hardware-Plattformen. - Paralleles Rechnen: Fähigkeit, groß angelegte Berechnungen durchzuführen und Simulationen mit Multicore-Desktops, GPUs, Clustern und Cloud-Ressourcen zu parallelisieren. - Bereitstellung: Optionen zum Teilen von MATLAB-Programmen und deren Bereitstellung in Unternehmensanwendungen, eingebetteten Geräten und Cloud-Umgebungen. Primärer Wert und Benutzerlösungen: MATLAB vereinfacht komplexe mathematische Berechnungen und Datenanalysetätigkeiten, wodurch Benutzer effizient Algorithmen und Modelle entwickeln können. Seine umfassenden Toolboxes und interaktiven Apps erleichtern schnelles Prototyping und iteratives Design, was die Entwicklungszeit verkürzt. Die Skalierbarkeit der Plattform ermöglicht einen nahtlosen Übergang von der Forschung zur Produktion und unterstützt die Bereitstellung auf verschiedenen Systemen ohne umfangreiche Codeänderungen. Durch die Integration mit mehreren Programmiersprachen und Hardware-Plattformen bietet MATLAB eine vielseitige Umgebung, die die vielfältigen Bedürfnisse von Ingenieuren und Wissenschaftlern in verschiedenen Branchen adressiert.
Große Daten einfach
SAP HANA Cloud ist die cloud-native Datenbasis der SAP Business Technology Platform, sie speichert, verarbeitet und analysiert Daten in Echtzeit im Petabyte-Bereich und vereint mehrere Datentypen in einem einzigen System, während sie diese effizienter mit integriertem Mehrstufenspeicher verwaltet.
Deepnote ist eine neue Art von Data-Science-Notebook. Echtzeit-Zusammenarbeit, keine Einrichtung und vollständig cloudbasiert.
Selbstbedienungs-Datenerkennung. Schnellster Weg zu umsetzbaren Erkenntnissen. Kollaborative, prädiktive, ereignisgesteuerte Datenanalyse - unabhängig von der IT.