Introducing G2.ai, the future of software buying.Try now

DataRobot und Vertex AI vergleichen

Speichern
    Anmelden in Ihrem Konto
    um Vergleiche zu speichern,
    Produkte und mehr.
Auf einen Blick
DataRobot
DataRobot
Sternebewertung
(26)4.4 von 5
Marktsegmente
Kleinunternehmen (54.2% der Bewertungen)
Informationen
Pros & Cons
Nicht genügend Daten
Einstiegspreis
Keine Preisinformationen verfügbar
Erfahren Sie mehr über DataRobot
Vertex AI
Vertex AI
Sternebewertung
(592)4.3 von 5
Marktsegmente
Kleinunternehmen (41.0% der Bewertungen)
Informationen
Pros & Cons
Einstiegspreis
Bezahlen Sie nach Bedarf Pro Monat
Kostenlose Testversion verfügbar
Erfahren Sie mehr über Vertex AI
KI-generierte Zusammenfassung
KI-generiert. Angetrieben von echten Nutzerbewertungen.
  • Benutzer berichten, dass Vertex AI in "AI High Availability" mit einer Bewertung von 9,2 hervorragend abschneidet, was laut Rezensenten zu einem zuverlässigeren Service für kritische Anwendungen beiträgt, verglichen mit DataRobots Bewertung von 8,5 in demselben Bereich.
  • Rezensenten erwähnen, dass die "Skalierbarkeit" von Vertex AI mit 8,9 bewertet wird, was es zu einer bevorzugten Wahl für Unternehmen macht, die wachsen möchten, während DataRobots Skalierbarkeitsbewertung von 7,8 dazu geführt hat, dass sich einige Benutzer in ihren Expansionsmöglichkeiten eingeschränkt fühlen.
  • G2-Benutzer heben hervor, dass Vertex AI überlegene Fähigkeiten in "Datenaufnahme & -aufbereitung" mit einer Bewertung von 8,3 bietet, was laut Rezensenten den Datenvorbereitungsprozess vereinfacht, während DataRobots niedrigere Bewertung in diesem Bereich als Nachteil für Benutzer angesehen wird, die robuste Datenverarbeitungsfunktionen benötigen.
  • Benutzer auf G2 berichten, dass die "Modellüberwachungs"-Funktionen von Vertex AI mit 8,6 bewertet werden, was eine bessere Überwachung und Leistungsnachverfolgung bietet, während DataRobots Bewertung von 5,8 dazu geführt hat, dass einige Benutzer Bedenken hinsichtlich der Effektivität seiner Überwachungstools äußern.
  • Rezensenten erwähnen, dass die "Einfachheit der Einrichtung" von Vertex AI mit 8,2 bewertet wird, was laut Benutzern die Benutzerfreundlichkeit für neue Anwender erhöht, verglichen mit DataRobots Bewertung von 7,0, bei der einige Benutzer von Herausforderungen während der anfänglichen Konfiguration berichtet haben.
  • Benutzer sagen, dass die "Qualität des Supports" von Vertex AI mit 8,2 bewertet wird, wobei viele Rezensenten die Reaktionsfähigkeit und Hilfsbereitschaft des Support-Teams loben, während DataRobots Bewertung von 7,9 zu gemischten Bewertungen hinsichtlich der Support-Erfahrung geführt hat.

DataRobot vs Vertex AI

Bei der Bewertung der beiden Lösungen fanden Rezensenten DataRobot einfacher zu verwenden und Geschäfte zu machen. Jedoch bevorzugten Rezensenten die Einrichtung mit Vertex AI, zusammen mit der Verwaltung.

  • Die Gutachter waren der Meinung, dass DataRobot den Bedürfnissen ihres Unternehmens besser entspricht als Vertex AI.
  • Beim Vergleich der Qualität des laufenden Produktsupports bevorzugten die Gutachter Vertex AI.
  • Bei Feature-Updates und Roadmaps bevorzugten unsere Rezensenten die Richtung von Vertex AI gegenüber DataRobot.
Preisgestaltung
Einstiegspreis
DataRobot
Keine Preisinformationen verfügbar
Vertex AI
Try Vertex AI Free
Bezahlen Sie nach Bedarf
Pro Monat
Erfahren Sie mehr über Vertex AI
Kostenlose Testversion
DataRobot
Keine Informationen zur Testversion verfügbar
Vertex AI
Kostenlose Testversion verfügbar
Bewertungen
Erfüllt die Anforderungen
8.8
23
8.6
359
Einfache Bedienung
8.5
23
8.2
368
Einfache Einrichtung
7.0
11
8.1
291
Einfache Verwaltung
7.4
11
7.9
141
Qualität der Unterstützung
7.9
22
8.1
335
Hat the product ein guter Partner im Geschäft waren?
8.3
11
8.2
135
Produktrichtung (% positiv)
8.4
22
9.2
353
Funktionen
Nicht genügend Daten
8.3
79
Einsatz
Nicht genügend Daten verfügbar
8.3
73
Nicht genügend Daten verfügbar
8.1
74
Nicht genügend Daten verfügbar
8.3
74
Nicht genügend Daten verfügbar
8.3
70
Nicht genügend Daten verfügbar
8.8
70
Einsatz
Nicht genügend Daten verfügbar
8.4
73
Nicht genügend Daten verfügbar
8.3
72
Nicht genügend Daten verfügbar
8.4
71
Nicht genügend Daten verfügbar
8.5
71
Nicht genügend Daten verfügbar
8.7
69
Management
Nicht genügend Daten verfügbar
8.3
70
Nicht genügend Daten verfügbar
8.5
69
Nicht genügend Daten verfügbar
8.0
69
Nicht genügend Daten verfügbar
8.1
69
Transaktionen
Nicht genügend Daten verfügbar
8.2
69
Nicht genügend Daten verfügbar
8.4
70
Nicht genügend Daten verfügbar
8.3
70
Management
Nicht genügend Daten verfügbar
8.1
68
Nicht genügend Daten verfügbar
8.4
69
Nicht genügend Daten verfügbar
8.3
68
Generative KI
Nicht genügend Daten verfügbar
8.2
34
Nicht genügend Daten verfügbar
8.4
34
Datenwissenschafts- und maschinelles Lernen-Plattformen25 Funktionen ausblenden25 Funktionen anzeigen
Nicht genügend Daten
8.2
214
system
Nicht genügend Daten verfügbar
8.2
170
Modellentwicklung
Nicht genügend Daten verfügbar
8.4
202
Nicht genügend Daten verfügbar
7.9
179
Nicht genügend Daten verfügbar
8.4
200
Nicht genügend Daten verfügbar
8.5
202
Modellentwicklung
Nicht genügend Daten verfügbar
8.2
165
Machine-/Deep-Learning-Dienste
Nicht genügend Daten verfügbar
8.2
200
Nicht genügend Daten verfügbar
8.4
196
Nicht genügend Daten verfügbar
8.2
195
Nicht genügend Daten verfügbar
8.2
178
Machine-/Deep-Learning-Dienste
Nicht genügend Daten verfügbar
8.5
165
Nicht genügend Daten verfügbar
8.4
163
Einsatz
Nicht genügend Daten verfügbar
8.2
193
Nicht genügend Daten verfügbar
8.3
194
Nicht genügend Daten verfügbar
8.5
193
Generative KI
Nicht genügend Daten verfügbar
8.3
102
Nicht genügend Daten verfügbar
8.2
102
Nicht genügend Daten verfügbar
8.1
103
Agentic AI - Datenwissenschafts- und maschinelles Lernplattformen
Nicht genügend Daten verfügbar
8.1
34
Nicht genügend Daten verfügbar
7.8
34
Nicht genügend Daten verfügbar
7.7
34
Nicht genügend Daten verfügbar
7.8
34
Nicht genügend Daten verfügbar
8.4
34
Nicht genügend Daten verfügbar
7.8
34
Nicht genügend Daten verfügbar
7.9
34
Nicht genügend Daten
8.4
29
Skalierbarkeit und Leistung - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
8.9
28
Nicht genügend Daten verfügbar
8.6
28
Nicht genügend Daten verfügbar
8.5
28
Kosten und Effizienz - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
8.2
28
Nicht genügend Daten verfügbar
7.8
28
Nicht genügend Daten verfügbar
7.9
28
Integration und Erweiterbarkeit - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
8.4
28
Nicht genügend Daten verfügbar
8.1
28
Nicht genügend Daten verfügbar
8.3
28
Sicherheit und Compliance - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
8.6
28
Nicht genügend Daten verfügbar
8.5
28
Nicht genügend Daten verfügbar
8.9
28
Benutzerfreundlichkeit und Unterstützung - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
8.2
28
Nicht genügend Daten verfügbar
8.3
28
Nicht genügend Daten
8.5
69
Integration - Maschinelles Lernen
Nicht genügend Daten verfügbar
8.5
67
Lernen - Maschinelles Lernen
Nicht genügend Daten verfügbar
8.5
66
Nicht genügend Daten verfügbar
8.3
65
Nicht genügend Daten verfügbar
8.8
66
Großes Sprachmodell-Betrieb (LLMOps)15 Funktionen ausblenden15 Funktionen anzeigen
Nicht genügend Daten
8.9
23
Prompt-Engineering - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
8.8
22
Nicht genügend Daten verfügbar
8.9
22
Inferenzoptimierung - Betriebsführung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
8.8
22
Modellgarten - Operationalisierung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
9.2
22
Benutzerdefiniertes Training - Betriebsführung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
9.0
22
Anwendungsentwicklung - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
9.2
22
Modellbereitstellung - Operationalisierung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
9.1
22
Nicht genügend Daten verfügbar
8.7
21
Leitplanken - Betrieb von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
9.0
21
Nicht genügend Daten verfügbar
8.8
21
Modellüberwachung - Betrieb von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
8.7
21
Nicht genügend Daten verfügbar
9.0
21
Sicherheit - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
9.1
22
Nicht genügend Daten verfügbar
8.9
22
Gateways & Router - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
8.9
22
Nicht genügend Daten
7.9
27
Anpassung - KI-Agenten-Ersteller
Nicht genügend Daten verfügbar
8.5
27
Nicht genügend Daten verfügbar
7.6
27
Nicht genügend Daten verfügbar
8.3
26
Funktionalität - KI-Agenten-Ersteller
Nicht genügend Daten verfügbar
8.1
27
Nicht genügend Daten verfügbar
7.3
27
Nicht genügend Daten verfügbar
8.2
26
Nicht genügend Daten verfügbar
7.2
27
Daten und Analytik - KI-Agentenentwickler
Nicht genügend Daten verfügbar
7.7
25
Nicht genügend Daten verfügbar
7.9
27
Nicht genügend Daten verfügbar
8.0
27
Integration - KI-Agentenbauer
Nicht genügend Daten verfügbar
8.7
27
Nicht genügend Daten verfügbar
8.0
27
Nicht genügend Daten verfügbar
8.0
27
Nicht genügend Daten verfügbar
7.5
27
Low-Code Machine-Learning-Plattformen6 Funktionen ausblenden6 Funktionen anzeigen
Nicht genügend Daten
Nicht genügend Daten
Datenaufnahme & -vorbereitung - Low-Code-Maschinenlernplattformen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Modellkonstruktion & Automatisierung - Low-Code-Maschinenlernplattformen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten
Nicht genügend Daten
Statistisches Tool
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Datenanalyse
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Entscheidungsfindung
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Generative KI
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Kategorien
Kategorien
Geteilte Kategorien
DataRobot
DataRobot
Vertex AI
Vertex AI
Einzigartige Kategorien
DataRobot
DataRobot ist kategorisiert als Predictive Analytics
Bewertungen
Unternehmensgröße der Bewerter
DataRobot
DataRobot
Kleinunternehmen(50 oder weniger Mitarbeiter)
54.2%
Unternehmen mittlerer Größe(51-1000 Mitarbeiter)
16.7%
Unternehmen(> 1000 Mitarbeiter)
29.2%
Vertex AI
Vertex AI
Kleinunternehmen(50 oder weniger Mitarbeiter)
41.0%
Unternehmen mittlerer Größe(51-1000 Mitarbeiter)
25.9%
Unternehmen(> 1000 Mitarbeiter)
33.1%
Branche der Bewerter
DataRobot
DataRobot
Computersoftware
20.8%
Informationstechnologie und Dienstleistungen
12.5%
Telekommunikation
8.3%
herstellungs-
4.2%
Einzelhandel
4.2%
Andere
50.0%
Vertex AI
Vertex AI
Computersoftware
17.5%
Informationstechnologie und Dienstleistungen
13.9%
Finanzdienstleistungen
7.0%
Einzelhandel
3.8%
Krankenhaus & Gesundheitswesen
3.4%
Andere
54.4%
Top-Alternativen
DataRobot
DataRobot Alternativen
Alteryx
Alteryx
Alteryx hinzufügen
Dataiku
Dataiku
Dataiku hinzufügen
Altair AI Studio
Altair AI Studio
Altair AI Studio hinzufügen
Azure Machine Learning
Azure Machine Learning Studio
Azure Machine Learning hinzufügen
Vertex AI
Vertex AI Alternativen
Dataiku
Dataiku
Dataiku hinzufügen
Azure Machine Learning
Azure Machine Learning Studio
Azure Machine Learning hinzufügen
Amazon SageMaker
Amazon SageMaker
Amazon SageMaker hinzufügen
Altair AI Studio
Altair AI Studio
Altair AI Studio hinzufügen
Diskussionen
DataRobot
DataRobot Diskussionen
Kann ich externe Bibliotheken mit meinen Algorithmen verwenden?
1 Kommentar
Craig P.
CP
Ja, das können Sie. Algorithmia verfügt über vollständige Paketverwaltungsfunktionen, die in die Plattform integriert sind.Mehr erfahren
Wie viel kostet die Nutzung von Algorithmia?
1 Kommentar
Craig P.
CP
Sie können mit Algorithmia Teams für nur 299 $/Monat beginnen.Mehr erfahren
Ich habe einen Fehler in einem Algorithmus gefunden oder er liefert nicht die erwarteten Ergebnisse, was kann ich tun?
1 Kommentar
Craig P.
CP
Wenn Sie ein Algorithmia Enterprise-Benutzer sind, kontaktieren Sie Ihr Account-Team für eine sofortige Antwort. Für Teams, während Sie auf der Plattform...Mehr erfahren
Vertex AI
Vertex AI Diskussionen
Wofür wird die Google Cloud AI Platform verwendet?
2 Kommentare
KS
Google Cloud AI Platform ermöglicht es uns, maschinelle Lernmodelle zu erstellen, die mit jeder Art und Größe von Daten arbeiten.Mehr erfahren
What software libraries does cloud ML engine support?
2 Kommentare
Jagannath P.
JP
Es unterstützt ungefähr alle trendigen Bibliotheken.Mehr erfahren
What is Google AI platform?
1 Kommentar
ZM
Die Google AI-Plattform ist ein umfassendes Set von Tools und Diensten, das von Google Cloud bereitgestellt wird, um künstliche Intelligenz zu entwickeln,...Mehr erfahren