Die unten aufgeführten Datenwissenschafts- und maschinelles Lernen-Plattformen-Lösungen sind die häufigsten Alternativen, die von Benutzern und Reviewern mit Vertex AI verglichen werden. Datenwissenschafts- und maschinelles Lernen-Plattformen ist eine weit verbreitete Technologie, und viele Menschen suchen nach einfach, schnell-Softwarelösungen mit modell-training, maschinelles sehen, und generierung natürlicher sprache. Andere wichtige Faktoren, die bei der Recherche von Alternativen zu Vertex AI zu berücksichtigen sind, beinhalten user interface und features. Die beste Gesamtalternative zu Vertex AI ist Dataiku. Andere ähnliche Apps wie Vertex AI sind Azure Machine Learning, Amazon SageMaker, Altair AI Studio, und Databricks Data Intelligence Platform. Vertex AI Alternativen finden Sie in Datenwissenschafts- und maschinelles Lernen-Plattformen, aber sie könnten auch in Generative KI-Infrastruktur-Software oder Großdatenverarbeitung und Verteilungssysteme sein.
Dataiku ist die universelle KI-Plattform, die Organisationen die Kontrolle über ihr KI-Talent, ihre Prozesse und Technologien gibt, um die Erstellung von Analysen, Modellen und Agenten zu ermöglichen.
Azure Machine Learning ist ein unternehmensgerechter Dienst, der den gesamten Lebenszyklus des maschinellen Lernens erleichtert und es Datenwissenschaftlern und Entwicklern ermöglicht, Modelle effizient zu erstellen, zu trainieren und bereitzustellen. Hauptmerkmale und Funktionalität: - Datenvorbereitung: Iterieren Sie schnell die Datenvorbereitung auf Apache Spark-Clustern innerhalb von Azure Machine Learning, interoperabel mit Microsoft Fabric. - Feature Store: Erhöhen Sie die Agilität beim Versand Ihrer Modelle, indem Sie Features über Arbeitsbereiche hinweg auffindbar und wiederverwendbar machen. - KI-Infrastruktur: Nutzen Sie die speziell entwickelte KI-Infrastruktur, die einzigartig darauf ausgelegt ist, die neuesten GPUs und InfiniBand-Netzwerke zu kombinieren. - Automatisiertes maschinelles Lernen: Erstellen Sie schnell genaue maschinelle Lernmodelle für Aufgaben wie Klassifikation, Regression, Vision und Verarbeitung natürlicher Sprache. - Verantwortungsvolle KI: Erstellen Sie verantwortungsvolle KI-Lösungen mit Interpretierbarkeitsfunktionen. Bewerten Sie die Fairness von Modellen durch Disparitätsmetriken und mindern Sie Unfairness. - Modellkatalog: Entdecken, verfeinern und implementieren Sie Grundmodelle von Microsoft, OpenAI, Hugging Face, Meta, Cohere und mehr mit dem Modellkatalog. - Prompt Flow: Entwerfen, konstruieren, bewerten und implementieren Sie Sprachmodell-Workflows mit Prompt Flow. - Verwaltete Endpunkte: Operationalisieren Sie die Modellbereitstellung und -bewertung, protokollieren Sie Metriken und führen Sie sichere Modell-Rollouts durch. Primärer Wert und bereitgestellte Lösungen: Azure Machine Learning beschleunigt die Zeit bis zur Wertschöpfung, indem es das Prompt Engineering und die Workflows für maschinelle Lernmodelle rationalisiert und die schnellere Modellentwicklung mit leistungsstarker KI-Infrastruktur erleichtert. Es rationalisiert die Abläufe, indem es reproduzierbare End-to-End-Pipelines ermöglicht und Workflows mit kontinuierlicher Integration und kontinuierlicher Bereitstellung (CI/CD) automatisiert. Die Plattform gewährleistet Vertrauen in die Entwicklung durch einheitliche Daten- und KI-Governance mit integrierter Sicherheit und Compliance, sodass Berechnungen überall für hybrides maschinelles Lernen ausgeführt werden können. Darüber hinaus fördert es verantwortungsvolle KI, indem es Einblick in Modelle bietet, Sprachmodell-Workflows bewertet und Fairness, Vorurteile und Schäden mit integrierten Sicherheitssystemen mindert.
Amazon SageMaker ist ein vollständig verwalteter Dienst, der Datenwissenschaftlern und Entwicklern ermöglicht, Machine-Learning-Modelle (ML) in großem Maßstab zu erstellen, zu trainieren und bereitzustellen. Es bietet eine umfassende Suite von Tools und Infrastruktur, die den gesamten ML-Workflow von der Datenvorbereitung bis zur Modellbereitstellung rationalisiert. Mit SageMaker können Benutzer schnell auf Trainingsdaten zugreifen, Algorithmen auswählen und optimieren sowie Modelle in einer sicheren und skalierbaren Umgebung bereitstellen. Hauptmerkmale und Funktionalität: - Integrierte Entwicklungsumgebungen (IDEs): SageMaker bietet eine einheitliche, webbasierte Oberfläche mit integrierten IDEs, einschließlich JupyterLab und RStudio, die eine nahtlose Entwicklung und Zusammenarbeit ermöglichen. - Vorgefertigte Algorithmen und Frameworks: Es umfasst eine Auswahl optimierter ML-Algorithmen und unterstützt beliebte Frameworks wie TensorFlow, PyTorch und Apache MXNet, was Flexibilität in der Modellentwicklung ermöglicht. - Automatisierte Modelloptimierung: SageMaker kann Modelle automatisch optimieren, um optimale Genauigkeit zu erreichen, wodurch der Zeit- und Arbeitsaufwand für manuelle Anpassungen reduziert wird. - Skalierbares Training und Bereitstellung: Der Dienst verwaltet die zugrunde liegende Infrastruktur, was ein effizientes Training von Modellen auf großen Datensätzen und deren Bereitstellung über automatisch skalierende Cluster für hohe Verfügbarkeit ermöglicht. - MLOps und Governance: SageMaker bietet Tools zur Überwachung, Fehlerbehebung und Verwaltung von ML-Modellen, um robuste Abläufe und die Einhaltung von Unternehmenssicherheitsstandards zu gewährleisten. Primärer Wert und gelöstes Problem: Amazon SageMaker adressiert die Komplexität und ressourcenintensive Natur der Entwicklung und Bereitstellung von ML-Modellen. Durch das Angebot einer vollständig verwalteten Umgebung mit integrierten Tools und skalierbarer Infrastruktur beschleunigt es den ML-Lebenszyklus, reduziert den betrieblichen Aufwand und ermöglicht es Organisationen, effizienter Erkenntnisse und Wert aus ihren Daten zu gewinnen. Dies befähigt Unternehmen, schnell zu innovieren und KI-Lösungen zu implementieren, ohne umfangreiche interne Expertise oder Infrastrukturmanagement zu benötigen.
Große Daten einfach
MATLAB ist eine hochentwickelte Programmier- und numerische Rechenumgebung, die von Ingenieuren und Wissenschaftlern weit verbreitet für Datenanalyse, Algorithmusentwicklung und Systemmodellierung genutzt wird. Es bietet eine Desktop-Umgebung, die für iterative Analyse- und Designprozesse optimiert ist, zusammen mit einer Programmiersprache, die Matrix- und Array-Mathematik direkt ausdrückt. Die Live-Editor-Funktion ermöglicht es Benutzern, Skripte zu erstellen, die Code, Ausgaben und formatierten Text in einem ausführbaren Notizbuch integrieren. Hauptmerkmale und Funktionalität: - Datenanalyse: Werkzeuge zum Erkunden, Modellieren und Analysieren von Daten. - Grafiken: Funktionen zur Visualisierung und Erkundung von Daten durch verschiedene Diagramme und Charts. - Programmierung: Möglichkeiten zur Erstellung von Skripten, Funktionen und Klassen für angepasste Workflows. - App-Entwicklung: Einrichtungen zur Entwicklung von Desktop- und Webanwendungen. - Externe Sprachschnittstellen: Integration mit Sprachen wie Python, C/C++, Fortran und Java. - Hardware-Konnektivität: Unterstützung für die Verbindung von MATLAB mit verschiedenen Hardware-Plattformen. - Paralleles Rechnen: Fähigkeit, groß angelegte Berechnungen durchzuführen und Simulationen mit Multicore-Desktops, GPUs, Clustern und Cloud-Ressourcen zu parallelisieren. - Bereitstellung: Optionen zum Teilen von MATLAB-Programmen und deren Bereitstellung in Unternehmensanwendungen, eingebetteten Geräten und Cloud-Umgebungen. Primärer Wert und Benutzerlösungen: MATLAB vereinfacht komplexe mathematische Berechnungen und Datenanalysetätigkeiten, wodurch Benutzer effizient Algorithmen und Modelle entwickeln können. Seine umfassenden Toolboxes und interaktiven Apps erleichtern schnelles Prototyping und iteratives Design, was die Entwicklungszeit verkürzt. Die Skalierbarkeit der Plattform ermöglicht einen nahtlosen Übergang von der Forschung zur Produktion und unterstützt die Bereitstellung auf verschiedenen Systemen ohne umfangreiche Codeänderungen. Durch die Integration mit mehreren Programmiersprachen und Hardware-Plattformen bietet MATLAB eine vielseitige Umgebung, die die vielfältigen Bedürfnisse von Ingenieuren und Wissenschaftlern in verschiedenen Branchen adressiert.
IBM Watson Studio beschleunigt die für die Integration von KI in Ihr Unternehmen erforderlichen Workflows für maschinelles Lernen und Deep Learning, um Innovationen voranzutreiben. Es bietet eine Reihe von Tools für Datenwissenschaftler, Anwendungsentwickler und Fachexperten, um gemeinsam und einfach mit Daten zu arbeiten und diese Daten zu nutzen, um Modelle in großem Maßstab zu erstellen, zu trainieren und bereitzustellen.
Alteryx treibt transformative Geschäftsergebnisse durch vereinheitlichte Analysen, Datenwissenschaft und Prozessautomatisierung voran.
SAP HANA Cloud ist die cloud-native Datenbasis der SAP Business Technology Platform, sie speichert, verarbeitet und analysiert Daten in Echtzeit im Petabyte-Bereich und vereint mehrere Datentypen in einem einzigen System, während sie diese effizienter mit integriertem Mehrstufenspeicher verwaltet.
Botpress ist eine benutzerfreundliche Conversational-AI-Plattform, die Einzelpersonen und Teams jeder Größe befähigt, KI-gestützte Chatbots für verschiedene Anwendungen zu entwerfen, zu erstellen und bereitzustellen. Als Pionier in der Chatbot-Branche nutzt Botpress die Kraft großer Sprachmodelle (LLM) und generativer KI, um personalisierte, ansprechende Chatbot-Erlebnisse für jeden Zweck zu schaffen. In über 100 Sprachen verfügbar und mit einer GPT-nativen Suite von Tools ausgestattet, die Ihnen helfen, Ihre Kreativität freizusetzen, unterstützt Botpress Sie bei der Erreichung Ihrer Ziele zur Automatisierung von Gesprächen.