Introducing G2.ai, the future of software buying.Try now

Confronta Azure Machine Learning e IBM watsonx.ai

Salva
    Accedi al tuo account
    per salvare confronti,
    prodotti e altro.
A Colpo d'Occhio
Azure Machine Learning
Azure Machine Learning
Valutazione a Stelle
(88)4.3 su 5
Segmenti di Mercato
Impresa (38.8% delle recensioni)
Informazioni
Prezzo di Ingresso
Nessun prezzo disponibile
Scopri di più su Azure Machine Learning
IBM watsonx.ai
IBM watsonx.ai
Valutazione a Stelle
(122)4.4 su 5
Segmenti di Mercato
Piccola Impresa (40.5% delle recensioni)
Informazioni
Prezzo di Ingresso
Nessun prezzo disponibile
Prova gratuita disponibile
Scopri di più su IBM watsonx.ai
Riassunto Generato dall'IA
Generato dall'IA. Basato su recensioni di utenti reali.
  • Gli utenti segnalano che Azure Machine Learning eccelle in scalabilità con un punteggio di 9.0, consentendo una gestione efficiente di grandi set di dati e modelli complessi, mentre IBM watsonx.ai, sebbene forte, ha un punteggio di scalabilità leggermente inferiore di 8.5, il che potrebbe influire sulle prestazioni in scenari ad alta domanda.
  • I revisori menzionano che Azure Machine Learning offre capacità superiori di ingestione e manipolazione dei dati con un punteggio di 8.7, rendendo più facile preparare i dati per l'analisi rispetto al punteggio di 8.2 di IBM watsonx.ai, che alcuni utenti trovano meno intuitivo.
  • Gli utenti di G2 evidenziano che IBM watsonx.ai brilla in facilità d'uso, con un punteggio di 9.1, che è superiore al punteggio di 8.6 di Azure Machine Learning. Questa interfaccia user-friendly è particolarmente vantaggiosa per le piccole imprese o per gli utenti nuovi al machine learning.
  • I revisori dicono che la funzione di registro dei modelli di Azure Machine Learning, con un punteggio di 9.3, è molto apprezzata per l'organizzazione e la gestione dei modelli, mentre le funzionalità di gestione dei modelli di IBM watsonx.ai, sebbene efficaci, ottengono un punteggio leggermente inferiore di 8.3, indicando margini di miglioramento.
  • Gli utenti su G2 segnalano che il punteggio di algoritmi predefiniti di Azure Machine Learning di 8.3 è competitivo, ma il punteggio di 8.7 di IBM watsonx.ai indica una selezione più ampia di algoritmi che possono soddisfare casi d'uso diversi, rendendolo un'opzione più attraente per gli utenti in cerca di varietà.
  • I revisori menzionano che la facilità di distribuzione di Azure Machine Learning è valutata a 9.0, che è alla pari con il punteggio di 8.6 di IBM watsonx.ai, ma gli utenti apprezzano il processo semplificato di Azure per distribuire i modelli in produzione, rendendolo una scelta preferita per i team focalizzati sull'efficienza.

Azure Machine Learning vs IBM watsonx.ai

Quando hanno valutato le due soluzioni, i revisori hanno trovato IBM watsonx.ai più facile da usare, configurare e amministrare. I revisori hanno anche preferito fare affari con IBM watsonx.ai in generale.

  • I revisori hanno ritenuto che IBM watsonx.ai soddisfi meglio le esigenze della loro azienda rispetto a Azure Machine Learning.
  • Quando si confronta la qualità del supporto continuo del prodotto, i revisori hanno ritenuto che IBM watsonx.ai sia l'opzione preferita.
  • Per gli aggiornamenti delle funzionalità e le roadmap, i nostri revisori hanno preferito la direzione di IBM watsonx.ai rispetto a Azure Machine Learning.
Prezzi
Prezzo di Ingresso
Azure Machine Learning
Nessun prezzo disponibile
IBM watsonx.ai
Nessun prezzo disponibile
Prova Gratuita
Azure Machine Learning
Nessuna informazione sulla prova disponibile
IBM watsonx.ai
Prova gratuita disponibile
Valutazioni
Soddisfa i requisiti
8.5
81
8.8
77
Facilità d'uso
8.5
80
8.9
109
Facilità di installazione
8.3
57
8.5
100
Facilità di amministrazione
8.3
49
8.7
36
Qualità del supporto
8.6
74
8.8
76
the product è stato un buon partner negli affari?
8.6
47
8.9
36
Direzione del prodotto (% positivo)
9.0
80
9.9
79
Caratteristiche per Categoria
Dati insufficienti
8.8
10
Distribuzione
Dati insufficienti
9.1
9
Dati insufficienti
8.5
9
Dati insufficienti
7.8
9
Dati insufficienti
8.7
9
Dati insufficienti
8.7
9
Distribuzione
Dati insufficienti
9.3
9
Dati insufficienti
8.7
9
Dati insufficienti
8.3
9
Dati insufficienti
8.9
9
Dati insufficienti
9.1
9
Gestione
Dati insufficienti
8.0
9
Dati insufficienti
8.5
9
Dati insufficienti
8.5
9
Dati insufficienti
9.3
9
Operazioni
Dati insufficienti
9.1
9
Dati insufficienti
8.7
9
Dati insufficienti
9.3
9
Gestione
Dati insufficienti
8.5
9
Dati insufficienti
9.0
8
Dati insufficienti
8.5
8
Intelligenza Artificiale Generativa
Dati insufficienti
9.1
9
Dati insufficienti
9.3
9
Piattaforme di Data Science e Machine LearningNascondi 25 CaratteristicheMostra 25 Caratteristiche
8.4
56
8.6
36
Sistema
8.6
22
8.2
31
Sviluppo del Modello
8.6
51
8.6
32
8.9
54
8.2
32
8.3
53
8.7
31
8.7
52
8.4
32
Sviluppo del modello
8.4
21
8.5
32
Servizi di Machine/Deep Learning
8.1
45
Funzionalità non disponibile
7.9
45
8.9
32
7.8
38
8.6
32
8.2
42
8.1
32
Servizi di Machine/Deep Learning
8.7
21
8.5
32
8.5
21
8.8
32
Distribuzione
8.8
50
8.2
32
8.7
51
8.6
32
8.9
51
8.8
32
Intelligenza Artificiale Generativa
8.5
10
8.8
31
8.2
10
8.8
31
7.5
10
Funzionalità non disponibile
Agentic AI - Piattaforme di Scienza dei Dati e Apprendimento Automatico
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
9.1
13
Tipo di Dati
Dati insufficienti
8.8
13
Dati insufficienti
Funzionalità non disponibile
Dati insufficienti
8.5
12
Tipo di Sintesi
Dati insufficienti
9.0
12
Dati insufficienti
9.2
12
Trasformazione dei dati
Dati insufficienti
8.6
12
Dati insufficienti
9.3
12
Dati insufficienti
9.7
12
Dati insufficienti
9.2
12
Dati insufficienti
9.2
12
Dati insufficienti
8.8
7
Scalabilità e Prestazioni - Infrastruttura di Intelligenza Artificiale Generativa
Dati insufficienti
9.3
7
Dati insufficienti
8.8
7
Dati insufficienti
9.3
7
Costo ed Efficienza - Infrastruttura di AI Generativa
Dati insufficienti
8.3
7
Dati insufficienti
8.6
7
Dati insufficienti
8.3
7
Integrazione ed Estensibilità - Infrastruttura di AI Generativa
Dati insufficienti
9.5
7
Dati insufficienti
8.6
7
Dati insufficienti
8.8
7
Sicurezza e Conformità - Infrastruttura di Intelligenza Artificiale Generativa
Dati insufficienti
8.3
7
Dati insufficienti
8.8
7
Dati insufficienti
8.6
7
Usabilità e Supporto - Infrastruttura di AI Generativa
Dati insufficienti
9.3
7
Dati insufficienti
9.0
7
Piattaforme di Creazione di Contenuti AINascondi 6 CaratteristicheMostra 6 Caratteristiche
Dati insufficienti
Dati insufficienti
Generazione di Contenuti - Piattaforme di Creazione di Contenuti AI
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Gestione - Piattaforme di Creazione di Contenuti AI
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
9.1
22
Integrazione - Apprendimento Automatico
Dati insufficienti
9.0
21
Apprendimento - Apprendimento automatico
Dati insufficienti
9.2
22
Dati insufficienti
9.1
22
Dati insufficienti
9.0
21
Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)Nascondi 15 CaratteristicheMostra 15 Caratteristiche
Dati insufficienti
8.8
7
Ingegneria dei Prompt - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
9.2
6
Dati insufficienti
8.1
6
Ottimizzazione dell'Inferenza - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.9
6
Giardino dei Modelli - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.9
6
Addestramento personalizzato - Operazionalizzazione di Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.1
6
Sviluppo di Applicazioni - Operazionalizzazione di Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.3
6
Distribuzione del Modello - Operazionalizzazione di Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.3
6
Dati insufficienti
8.6
6
Guardrails - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
9.4
6
Dati insufficienti
8.6
6
Monitoraggio del Modello - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.6
6
Dati insufficienti
8.9
6
Sicurezza - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
9.4
6
Dati insufficienti
9.2
6
Gateway e Router - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
8.9
6
Dati insufficienti
8.9
9
Personalizzazione - Costruttori di Agenti AI
Dati insufficienti
8.8
7
Dati insufficienti
9.0
7
Dati insufficienti
9.0
7
Funzionalità - Costruttori di Agenti AI
Dati insufficienti
8.6
7
Dati insufficienti
9.0
7
Dati insufficienti
9.3
7
Dati insufficienti
8.8
7
Dati e Analisi - Costruttori di Agenti AI
Dati insufficienti
9.0
7
Dati insufficienti
8.8
7
Dati insufficienti
9.0
7
Integrazione - Costruttori di Agenti AI
Dati insufficienti
9.0
7
Dati insufficienti
9.0
7
Dati insufficienti
9.0
7
Dati insufficienti
8.6
7
Piattaforme di Machine Learning a Basso CodiceNascondi 6 CaratteristicheMostra 6 Caratteristiche
Dati insufficienti
Dati insufficienti
Ingestione e Preparazione dei Dati - Piattaforme di Machine Learning a Basso Codice
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Costruzione di Modelli e Automazione - Piattaforme di Machine Learning a Basso Codice
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Categorie
Categorie
Categorie uniche
Azure Machine Learning
Azure Machine Learning non ha categorie uniche
Recensioni
Dimensione dell'Azienda dei Recensori
Azure Machine Learning
Azure Machine Learning
Piccola impresa(50 o meno dip.)
35.3%
Mid-Market(51-1000 dip.)
25.9%
Enterprise(> 1000 dip.)
38.8%
IBM watsonx.ai
IBM watsonx.ai
Piccola impresa(50 o meno dip.)
40.5%
Mid-Market(51-1000 dip.)
31.5%
Enterprise(> 1000 dip.)
27.9%
Settore dei Recensori
Azure Machine Learning
Azure Machine Learning
Tecnologia dell'informazione e servizi
28.2%
Software per computer
14.1%
Consulenza di gestione
8.2%
Gestione dell'Istruzione
5.9%
Istruzione Superiore
4.7%
Altro
38.8%
IBM watsonx.ai
IBM watsonx.ai
Tecnologia dell'informazione e servizi
18.9%
Software per computer
11.7%
Consulenza
7.2%
Bancario
6.3%
Marketing e Pubblicità
5.4%
Altro
50.5%
Alternative
Azure Machine Learning
Alternative a Azure Machine Learning
Vertex AI
Vertex AI
Aggiungi Vertex AI
Dataiku
Dataiku
Aggiungi Dataiku
Amazon SageMaker
Amazon SageMaker
Aggiungi Amazon SageMaker
Altair AI Studio
Altair AI Studio
Aggiungi Altair AI Studio
IBM watsonx.ai
Alternative a IBM watsonx.ai
Vertex AI
Vertex AI
Aggiungi Vertex AI
Databricks Data Intelligence Platform
Databricks Data Intelligence Platform
Aggiungi Databricks Data Intelligence Platform
SAS Viya
SAS Viya
Aggiungi SAS Viya
Altair AI Studio
Altair AI Studio
Aggiungi Altair AI Studio
Discussioni
Azure Machine Learning
Discussioni su Azure Machine Learning
A cosa serve Azure Machine Learning Studio?
1 Commento
Akash R.
AR
In breve, per costruire, distribuire e gestire modelli di alta qualità più velocemente e con fiducia.Leggi di più
Monty il Mangusta che piange
Azure Machine Learning non ha più discussioni con risposte
IBM watsonx.ai
Discussioni su IBM watsonx.ai
Monty il Mangusta che piange
IBM watsonx.ai non ha discussioni con risposte