Introducing G2.ai, the future of software buying.Try now

Confronta Azure Machine Learning e Google Cloud AutoML

Salva
    Accedi al tuo account
    per salvare confronti,
    prodotti e altro.
A Colpo d'Occhio
Azure Machine Learning
Azure Machine Learning
Valutazione a Stelle
(88)4.3 su 5
Segmenti di Mercato
Impresa (38.8% delle recensioni)
Informazioni
Prezzo di Ingresso
Nessun prezzo disponibile
Scopri di più su Azure Machine Learning
Google Cloud AutoML
Google Cloud AutoML
Valutazione a Stelle
(22)4.1 su 5
Segmenti di Mercato
Piccola Impresa (45.5% delle recensioni)
Informazioni
Prezzo di Ingresso
Nessun prezzo disponibile
Scopri di più su Google Cloud AutoML
Riassunto Generato dall'IA
Generato dall'IA. Basato su recensioni di utenti reali.
  • Gli utenti segnalano che Azure Machine Learning eccelle in Facilità di Configurazione con un punteggio di 8,4, mentre Google Cloud AutoML è indietro con 7,3. I revisori menzionano che il processo di onboarding semplificato di Azure rende più facile per i team iniziare rapidamente.
  • I revisori menzionano che Azure Machine Learning offre una Qualità del Supporto superiore con un punteggio di 8,6 rispetto al 7,6 di Google Cloud AutoML. Gli utenti su G2 apprezzano il servizio clienti reattivo e la documentazione estesa fornita da Azure.
  • Gli utenti dicono che Azure Machine Learning brilla in Scalabilità con un punteggio di 8,9, mentre Google Cloud AutoML ottiene 9,2. Tuttavia, i revisori menzionano che l'infrastruttura di Google Cloud consente una più flessibile allocazione delle risorse, rendendolo un forte concorrente per progetti su larga scala.
  • Gli utenti di G2 segnalano che le caratteristiche di Sviluppo del Modello di Azure Machine Learning, in particolare i suoi Algoritmi Pre-Costruiti con un punteggio di 8,3, sono robusti, ma il punteggio di 8,2 di Google Cloud AutoML indica che fornisce anche strumenti preziosi per l'addestramento del modello e l'ingegneria delle caratteristiche.
  • Gli utenti su G2 evidenziano che le capacità di Ingestione e Manipolazione dei Dati di Azure Machine Learning ottengono un punteggio di 8,7, rendendo più facile preparare i dati per l'analisi. Al contrario, le caratteristiche di Google Cloud AutoML in quest'area sono meno enfatizzate, portando a qualche frustrazione tra gli utenti.
  • I revisori menzionano che le opzioni di Distribuzione di Azure Machine Learning, in particolare il suo Servizio Gestito con un punteggio di 8,8, sono user-friendly, mentre le caratteristiche di distribuzione di Google Cloud AutoML, sebbene efficaci, sono percepite come leggermente meno intuitive.

Azure Machine Learning vs Google Cloud AutoML

Quando hanno valutato le due soluzioni, i revisori hanno trovato Google Cloud AutoML più facile da usare. Tuttavia, Azure Machine Learning è più facile da configurare e amministrare. I revisori hanno anche preferito fare affari con Azure Machine Learning in generale.

  • I revisori hanno ritenuto che Google Cloud AutoML soddisfi meglio le esigenze della loro azienda rispetto a Azure Machine Learning.
  • Quando si confronta la qualità del supporto continuo del prodotto, i revisori hanno ritenuto che Azure Machine Learning sia l'opzione preferita.
  • Per gli aggiornamenti delle funzionalità e le roadmap, i nostri revisori hanno preferito la direzione di Azure Machine Learning rispetto a Google Cloud AutoML.
Prezzi
Prezzo di Ingresso
Azure Machine Learning
Nessun prezzo disponibile
Google Cloud AutoML
Nessun prezzo disponibile
Prova Gratuita
Azure Machine Learning
Nessuna informazione sulla prova disponibile
Google Cloud AutoML
Nessuna informazione sulla prova disponibile
Valutazioni
Soddisfa i requisiti
8.5
81
8.6
14
Facilità d'uso
8.5
80
8.6
14
Facilità di installazione
8.3
57
7.4
11
Facilità di amministrazione
8.3
49
7.9
12
Qualità del supporto
8.6
74
7.5
14
the product è stato un buon partner negli affari?
8.6
47
8.3
11
Direzione del prodotto (% positivo)
9.0
80
8.9
11
Caratteristiche per Categoria
Dati insufficienti
Dati insufficienti
Distribuzione
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Distribuzione
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Gestione
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Operazioni
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Gestione
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Intelligenza Artificiale Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Piattaforme di Data Science e Machine LearningNascondi 25 CaratteristicheMostra 25 Caratteristiche
8.4
56
Dati insufficienti
Sistema
8.6
22
Dati insufficienti
Sviluppo del Modello
8.6
51
Dati insufficienti
8.9
54
Dati insufficienti
8.3
53
Dati insufficienti
8.7
52
Dati insufficienti
Sviluppo del modello
8.4
21
Dati insufficienti
Servizi di Machine/Deep Learning
8.1
45
Dati insufficienti
7.9
45
Dati insufficienti
7.8
38
Dati insufficienti
8.2
42
Dati insufficienti
Servizi di Machine/Deep Learning
8.7
21
Dati insufficienti
8.5
21
Dati insufficienti
Distribuzione
8.8
50
Dati insufficienti
8.7
51
Dati insufficienti
8.9
51
Dati insufficienti
Intelligenza Artificiale Generativa
8.5
10
Dati insufficienti
8.2
10
Dati insufficienti
7.5
10
Dati insufficienti
Agentic AI - Piattaforme di Scienza dei Dati e Apprendimento Automatico
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Scalabilità e Prestazioni - Infrastruttura di Intelligenza Artificiale Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Costo ed Efficienza - Infrastruttura di AI Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Integrazione ed Estensibilità - Infrastruttura di AI Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Sicurezza e Conformità - Infrastruttura di Intelligenza Artificiale Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Usabilità e Supporto - Infrastruttura di AI Generativa
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)Nascondi 15 CaratteristicheMostra 15 Caratteristiche
Dati insufficienti
Dati insufficienti
Ingegneria dei Prompt - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Ottimizzazione dell'Inferenza - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Giardino dei Modelli - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Addestramento personalizzato - Operazionalizzazione di Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Sviluppo di Applicazioni - Operazionalizzazione di Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Distribuzione del Modello - Operazionalizzazione di Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Guardrails - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Monitoraggio del Modello - Operazionalizzazione dei Modelli di Linguaggio di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Sicurezza - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Gateway e Router - Operazionalizzazione dei Modelli Linguistici di Grandi Dimensioni (LLMOps)
Dati insufficienti
Dati insufficienti
Piattaforme di Machine Learning a Basso CodiceNascondi 6 CaratteristicheMostra 6 Caratteristiche
Dati insufficienti
Dati insufficienti
Ingestione e Preparazione dei Dati - Piattaforme di Machine Learning a Basso Codice
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Costruzione di Modelli e Automazione - Piattaforme di Machine Learning a Basso Codice
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Dati insufficienti
Categorie
Categorie
Categorie condivise
Azure Machine Learning
Azure Machine Learning
Google Cloud AutoML
Google Cloud AutoML
Azure Machine Learning e Google Cloud AutoML sono categorizzati comePiattaforme di Data Science e Machine Learning e Piattaforme di Machine Learning a Basso Codice
Categorie uniche
Google Cloud AutoML
Google Cloud AutoML non ha categorie uniche
Recensioni
Dimensione dell'Azienda dei Recensori
Azure Machine Learning
Azure Machine Learning
Piccola impresa(50 o meno dip.)
35.3%
Mid-Market(51-1000 dip.)
25.9%
Enterprise(> 1000 dip.)
38.8%
Google Cloud AutoML
Google Cloud AutoML
Piccola impresa(50 o meno dip.)
45.5%
Mid-Market(51-1000 dip.)
27.3%
Enterprise(> 1000 dip.)
27.3%
Settore dei Recensori
Azure Machine Learning
Azure Machine Learning
Tecnologia dell'informazione e servizi
28.2%
Software per computer
14.1%
Consulenza di gestione
8.2%
Gestione dell'Istruzione
5.9%
Istruzione Superiore
4.7%
Altro
38.8%
Google Cloud AutoML
Google Cloud AutoML
Ricerca
13.6%
Tecnologia dell'informazione e servizi
13.6%
Software per computer
9.1%
Sviluppo del programma
4.5%
Prodotti farmaceutici
4.5%
Altro
54.5%
Alternative
Azure Machine Learning
Alternative a Azure Machine Learning
Vertex AI
Vertex AI
Aggiungi Vertex AI
Dataiku
Dataiku
Aggiungi Dataiku
Amazon SageMaker
Amazon SageMaker
Aggiungi Amazon SageMaker
Altair AI Studio
Altair AI Studio
Aggiungi Altair AI Studio
Google Cloud AutoML
Alternative a Google Cloud AutoML
Amazon SageMaker
Amazon SageMaker
Aggiungi Amazon SageMaker
DataRobot
DataRobot
Aggiungi DataRobot
Dataiku
Dataiku
Aggiungi Dataiku
Altair AI Studio
Altair AI Studio
Aggiungi Altair AI Studio
Discussioni
Azure Machine Learning
Discussioni su Azure Machine Learning
A cosa serve Azure Machine Learning Studio?
1 Commento
Akash R.
AR
In breve, per costruire, distribuire e gestire modelli di alta qualità più velocemente e con fiducia.Leggi di più
Monty il Mangusta che piange
Azure Machine Learning non ha più discussioni con risposte
Google Cloud AutoML
Discussioni su Google Cloud AutoML
Monty il Mangusta che piange
Google Cloud AutoML non ha discussioni con risposte