Cloudera ist nicht die einzige Option für Plattformen zur Integration von Big Data. Entdecken Sie andere konkurrierende Optionen und Alternativen. Plattformen zur Integration von Big Data ist eine weit verbreitete Technologie, und viele Menschen suchen nach beliebt, schnell-Softwarelösungen mit hadoop-integration, maschinelle skalierung, und cloud-verarbeitung. Andere wichtige Faktoren, die bei der Recherche von Alternativen zu Cloudera zu berücksichtigen sind, beinhalten features und data analytics. Die beste Gesamtalternative zu Cloudera ist Google Cloud BigQuery. Andere ähnliche Apps wie Cloudera sind Snowflake, Databricks Data Intelligence Platform, Teradata Vantage, und Amazon Redshift. Cloudera Alternativen finden Sie in Plattformen zur Integration von Big Data, aber sie könnten auch in Datenlagerlösungen oder Großdatenverarbeitung und Verteilungssysteme sein.
Analysieren Sie Big Data in der Cloud mit BigQuery. Führen Sie schnelle, SQL-ähnliche Abfragen gegen Multi-Terabyte-Datensätze in Sekunden aus. Skalierbar und einfach zu bedienen, bietet BigQuery Echtzeiteinblicke in Ihre Daten.
Die Plattform von Snowflake beseitigt Datensilos und vereinfacht Architekturen, sodass Organisationen mehr Wert aus ihren Daten ziehen können. Die Plattform ist als ein einziges, einheitliches Produkt konzipiert, mit Automatisierungen, die die Komplexität reduzieren und sicherstellen, dass alles „einfach funktioniert“. Um eine breite Palette von Arbeitslasten zu unterstützen, ist sie für Leistung im großen Maßstab optimiert, unabhängig davon, ob jemand mit SQL, Python oder anderen Sprachen arbeitet. Und sie ist global vernetzt, sodass Organisationen sicher auf die relevantesten Inhalte über Clouds und Regionen hinweg zugreifen können, mit einer konsistenten Erfahrung.
Große Daten einfach
Amazon Redshift ist ein schnelles, vollständig verwaltetes Data Warehouse, das es einfach und kostengünstig macht, alle Ihre Daten mit standardmäßigem SQL und Ihren vorhandenen Business-Intelligence-Tools (BI) zu analysieren.
Eine Streaming-Datenplattform.
Qubole liefert eine Self-Service-Plattform für Big Data Analytics, die auf den Clouds von Amazon, Microsoft und Google basiert.
Dremio ist eine Datenanalyse-Software. Es ist eine Self-Service-Datenplattform, die es Benutzern ermöglicht, Daten jederzeit zu entdecken, zu beschleunigen und zu teilen.
Azure Databricks ist eine einheitliche, offene Analyseplattform, die gemeinsam von Microsoft und Databricks entwickelt wurde. Basierend auf der Lakehouse-Architektur integriert sie nahtlos Datenengineering, Data Science und maschinelles Lernen innerhalb des Azure-Ökosystems. Diese Plattform vereinfacht die Entwicklung und Bereitstellung datengetriebener Anwendungen, indem sie einen kollaborativen Arbeitsbereich bietet, der mehrere Programmiersprachen unterstützt, darunter SQL, Python, R und Scala. Durch die Nutzung von Azure Databricks können Organisationen große Datenmengen effizient verarbeiten, fortgeschrittene Analysen durchführen und KI-Lösungen entwickeln, während sie von der Skalierbarkeit und Sicherheit von Azure profitieren. Hauptmerkmale und Funktionalität: - Lakehouse-Architektur: Kombiniert die besten Elemente von Data Lakes und Data Warehouses und ermöglicht eine einheitliche Datenspeicherung und Analyse. - Kollaborative Notebooks: Interaktive Arbeitsbereiche, die mehrere Sprachen unterstützen und die Zusammenarbeit zwischen Dateningenieuren, Data Scientists und Analysten erleichtern. - Optimierte Apache Spark Engine: Verbessert die Leistung bei Big-Data-Verarbeitung, um schnellere und zuverlässigere Analysen zu gewährleisten. - Delta Lake Integration: Bietet ACID-Transaktionen und skalierbare Metadatenverwaltung, um die Datenzuverlässigkeit und Konsistenz zu verbessern. - Nahtlose Azure-Integration: Bietet native Konnektivität zu Azure-Diensten wie Power BI, Azure Data Lake Storage und Azure Synapse Analytics, um Daten-Workflows zu optimieren. - Unterstützung für fortgeschrittenes maschinelles Lernen: Beinhaltet vorkonfigurierte Umgebungen für die Entwicklung von maschinellem Lernen und KI, mit Unterstützung für beliebte Frameworks und Bibliotheken. Primärer Wert und bereitgestellte Lösungen: Azure Databricks adressiert die Herausforderungen bei der Verwaltung und Analyse großer Datenmengen, indem es eine skalierbare und kollaborative Plattform bietet, die Datenengineering, Data Science und maschinelles Lernen vereint. Es vereinfacht komplexe Daten-Workflows, beschleunigt die Zeit bis zur Erkenntnis und ermöglicht die Entwicklung von KI-gesteuerten Lösungen. Durch die nahtlose Integration mit Azure-Diensten gewährleistet es eine sichere und effiziente Datenverarbeitung, die Organisationen dabei hilft, datengetriebene Entscheidungen zu treffen und schnell zu innovieren.
Vertica bietet eine softwarebasierte Analyseplattform, die Organisationen jeder Größe dabei unterstützt, Daten in Echtzeit und in großem Maßstab zu monetarisieren.