Suchen Sie nach Alternativen oder Wettbewerbern zu Confluent? Ereignisstromverarbeitungssoftware ist eine weit verbreitete Technologie, und viele Menschen suchen nach innovativ, hohe Qualität-Softwarelösungen mit cloud-verarbeitung, spark-integration, und data lake. Andere wichtige Faktoren, die bei der Recherche von Alternativen zu Confluent zu berücksichtigen sind, beinhalten features. Die beste Gesamtalternative zu Confluent ist Lenses. Andere ähnliche Apps wie Confluent sind Apache Kafka, Amazon Kinesis Data Streams, Cloudera, und Amazon Managed Streaming for Apache Kafka (Amazon MSK). Confluent Alternativen finden Sie in Ereignisstromverarbeitungssoftware, aber sie könnten auch in Stream-Analyse Software oder Datenlagerlösungen sein.
Linsen, ein Produkt zur Optimierung Ihrer Datenpipelines über Kubernetes, verbinden Kafka mit externen Systemen und verwalten einfach Ihren Cluster. Die Datenstreaming-Plattform, die Ihre Streams mit Kafka und Kubernetes vereinfacht; jeder Fluss, jede Daten, eine Linse.
Apache Kafka ist eine Open-Source-Plattform für verteiltes Event-Streaming, die von der Apache Software Foundation entwickelt wurde. Sie ist darauf ausgelegt, Echtzeit-Datenströme mit hoher Durchsatzrate und niedriger Latenz zu verarbeiten, was sie ideal für den Aufbau von Datenpipelines, Streaming-Analysen und die Integration von Daten über verschiedene Systeme hinweg macht. Kafka ermöglicht es Organisationen, Datenströme in einer fehlertoleranten und skalierbaren Weise zu veröffentlichen, zu speichern und zu verarbeiten und unterstützt geschäftskritische Anwendungen in verschiedenen Branchen. Hauptmerkmale und Funktionalität: - Hoher Durchsatz und niedrige Latenz: Kafka liefert Nachrichten mit netzwerkbegrenztem Durchsatz und Latenzen von nur 2 Millisekunden, was eine effiziente Datenverarbeitung gewährleistet. - Skalierbarkeit: Es kann Produktionscluster auf Tausende von Brokern skalieren, die täglich Billionen von Nachrichten und Petabytes an Daten verarbeiten, während es die Speicher- und Verarbeitungskapazitäten elastisch erweitert und reduziert. - Dauerhafte Speicherung: Kafka speichert Datenströme sicher in einem verteilten, dauerhaften und fehlertoleranten Cluster, was die Datenintegrität und -verfügbarkeit sicherstellt. - Hohe Verfügbarkeit: Die Plattform unterstützt die effiziente Streckung von Clustern über Verfügbarkeitszonen hinweg und verbindet separate Cluster über geografische Regionen, was die Widerstandsfähigkeit erhöht. - Stream-Verarbeitung: Kafka bietet integrierte Stream-Verarbeitungsfunktionen über die Kafka Streams API, die Operationen wie Joins, Aggregationen, Filter und Transformationen mit Event-Zeit-Verarbeitung und genau-einmal-Semantik ermöglichen. - Konnektivität: Mit Kafka Connect integriert es sich nahtlos mit Hunderten von Event-Quellen und -Senken, einschließlich Datenbanken, Nachrichtensystemen und Cloud-Speicherdiensten. Primärer Wert und bereitgestellte Lösungen: Apache Kafka adressiert die Herausforderungen der Verwaltung von Echtzeit-Datenströmen, indem es eine einheitliche Plattform bietet, die Messaging, Speicherung und Stream-Verarbeitung kombiniert. Es ermöglicht Organisationen: - Echtzeit-Datenpipelines zu bauen: Den kontinuierlichen Datenfluss zwischen Systemen zu erleichtern und eine rechtzeitige und zuverlässige Datenlieferung sicherzustellen. - Streaming-Analysen zu implementieren: Datenströme in Echtzeit zu analysieren und zu verarbeiten, was sofortige Einblicke und Aktionen ermöglicht. - Datenintegration sicherzustellen: Verschiedene Datenquellen und -senken nahtlos zu verbinden und ein kohärentes Datenökosystem zu fördern. - Geschäfskritische Anwendungen zu unterstützen: Eine robuste und fehlertolerante Infrastruktur bereitzustellen, die in der Lage ist, hochvolumige und hochfrequente Daten zu verarbeiten, was für kritische Geschäftsoperationen unerlässlich ist. Durch die Nutzung der Fähigkeiten von Kafka können Organisationen ihre Datenarchitekturen modernisieren, die betriebliche Effizienz steigern und Innovationen durch Echtzeit-Datenverarbeitung und -analysen vorantreiben.
Amazon Kinesis Data Streams ist ein serverloser Streaming-Datenservice, der es einfach macht, Datenströme in beliebigem Umfang zu erfassen, zu verarbeiten und zu speichern.
Amazon Managed Streaming for Kafka (Amazon MSK) ist ein vollständig verwalteter Dienst, der es Ihnen erleichtert, Anwendungen zu erstellen und auszuführen, die Apache Kafka zur Verarbeitung von Streaming-Daten verwenden. Apache Kafka ist eine Open-Source-Plattform zum Erstellen von Echtzeit-Streaming-Datenpipelines und Anwendungen.
Aiven für Apache Kafka ist eine vollständig verwaltete Streaming-Plattform, die in der Cloud Ihrer Wahl bereitgestellt werden kann. Integrieren Sie es in Ihre bestehenden Workflows und konzentrieren Sie sich auf den Aufbau Ihrer Kernanwendungen.
Die Plattform von Snowflake beseitigt Datensilos und vereinfacht Architekturen, sodass Organisationen mehr Wert aus ihren Daten ziehen können. Die Plattform ist als ein einziges, einheitliches Produkt konzipiert, mit Automatisierungen, die die Komplexität reduzieren und sicherstellen, dass alles „einfach funktioniert“. Um eine breite Palette von Arbeitslasten zu unterstützen, ist sie für Leistung im großen Maßstab optimiert, unabhängig davon, ob jemand mit SQL, Python oder anderen Sprachen arbeitet. Und sie ist global vernetzt, sodass Organisationen sicher auf die relevantesten Inhalte über Clouds und Regionen hinweg zugreifen können, mit einer konsistenten Erfahrung.
Große Daten einfach
Alteryx treibt transformative Geschäftsergebnisse durch vereinheitlichte Analysen, Datenwissenschaft und Prozessautomatisierung voran.
Die Teradata-Datenbank bewältigt komplexe Datenanforderungen mühelos und effizient und vereinfacht die Verwaltung der Data-Warehouse-Umgebung.