Introducing G2.ai, the future of software buying.Try now

Azure Machine Learning und BigML vergleichen

Speichern
    Anmelden in Ihrem Konto
    um Vergleiche zu speichern,
    Produkte und mehr.
Auf einen Blick
Azure Machine Learning
Azure Machine Learning
Sternebewertung
(88)4.3 von 5
Marktsegmente
Unternehmen (38.8% der Bewertungen)
Informationen
Pros & Cons
Einstiegspreis
Keine Preisinformationen verfügbar
Erfahren Sie mehr über Azure Machine Learning
BigML
BigML
Sternebewertung
(24)4.7 von 5
Marktsegmente
Kleinunternehmen (87.5% der Bewertungen)
Informationen
Pros & Cons
Nicht genügend Daten
Einstiegspreis
$30 per month
Alle 3 Preispläne durchsuchen
KI-generierte Zusammenfassung
KI-generiert. Angetrieben von echten Nutzerbewertungen.
  • Benutzer berichten, dass BigML in der Benutzerfreundlichkeit mit einer Bewertung von 9,0 hervorragend abschneidet, was es besonders für kleine Unternehmen attraktiv macht. Rezensenten erwähnen, dass die Drag-and-Drop-Oberfläche den Modellentwicklungsprozess vereinfacht und es den Benutzern ermöglicht, schnell maschinelle Lernmodelle zu erstellen und bereitzustellen, ohne umfangreiche Programmierkenntnisse zu benötigen.
  • Rezensenten erwähnen, dass Azure Machine Learning in der Skalierbarkeit glänzt und eine Bewertung von 9,2 erreicht. Benutzer auf G2 heben seine robusten Infrastrukturmanagement-Fähigkeiten hervor, die für Unternehmensanwendungen, die große Datensätze und komplexe Modelle effizient handhaben müssen, unerlässlich sind.
  • G2-Benutzer berichten, dass die Qualität des Supports von BigML herausragend ist, mit einer Bewertung von 9,5. Benutzer schätzen den reaktionsschnellen Kundenservice und die umfassende Dokumentation, die ihnen helfen, Herausforderungen schnell zu meistern und ihre Gesamterfahrung mit der Plattform zu verbessern.
  • Benutzer sagen, dass Azure Machine Learning überlegene Integrations- und Erweiterungsfunktionen bietet, insbesondere mit seiner Unterstützung für KI-APIs und Flexibilität. Rezensenten erwähnen, dass dies eine nahtlose Integration in bestehende Workflows und Drittanbieteranwendungen ermöglicht, was es zu einer starken Wahl für Unternehmen macht, die ihre bestehende Technologiebasis nutzen möchten.
  • Rezensenten erwähnen, dass die Modelltrainingsfähigkeiten von BigML benutzerfreundlich sind und eine Bewertung von 8,7 erhalten, was für Benutzer von Vorteil ist, die möglicherweise keine umfangreichen Kenntnisse in der Datenwissenschaft haben. Benutzer schätzen die vorgefertigten Algorithmen, die schnelle Experimente und die Bereitstellung von Modellen erleichtern.
  • Benutzer auf G2 berichten, dass Azure Machine Learning erweiterte Funktionen für die Modellüberwachung und Drift-Erkennung bietet, die entscheidend für die Aufrechterhaltung der Modellleistung im Laufe der Zeit sind. Rezensenten heben die Echtzeit-Leistungsmetriken als ein Schlüsselelement hervor, das Teams hilft, über die Effektivität ihrer Modelle informiert zu bleiben.

Azure Machine Learning vs BigML

Bei der Bewertung der beiden Lösungen fanden die Rezensenten BigML einfacher zu verwenden, einzurichten und zu verwalten. Die Rezensenten bevorzugten es auch, insgesamt Geschäfte mit BigML zu machen.

  • Die Gutachter waren der Meinung, dass BigML den Bedürfnissen ihres Unternehmens besser entspricht als Azure Machine Learning.
  • Beim Vergleich der Qualität des laufenden Produktsupports bevorzugten die Gutachter BigML.
  • Bei Feature-Updates und Roadmaps bevorzugten unsere Rezensenten die Richtung von BigML gegenüber Azure Machine Learning.
Preisgestaltung
Einstiegspreis
Azure Machine Learning
Keine Preisinformationen verfügbar
BigML
STANDARD
$30
per month
Alle 3 Preispläne durchsuchen
Kostenlose Testversion
Azure Machine Learning
Keine Informationen zur Testversion verfügbar
BigML
Keine Informationen zur Testversion verfügbar
Bewertungen
Erfüllt die Anforderungen
8.5
81
9.2
24
Einfache Bedienung
8.5
80
9.0
24
Einfache Einrichtung
8.3
57
9.2
22
Einfache Verwaltung
8.3
49
9.3
22
Qualität der Unterstützung
8.6
74
9.5
22
Hat the product ein guter Partner im Geschäft waren?
8.6
47
9.1
22
Produktrichtung (% positiv)
9.0
80
9.5
24
Funktionen
Nicht genügend Daten
Nicht genügend Daten
Einsatz
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Einsatz
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Management
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Transaktionen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Management
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Generative KI
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Datenwissenschafts- und maschinelles Lernen-Plattformen25 Funktionen ausblenden25 Funktionen anzeigen
8.4
56
Nicht genügend Daten
system
8.6
22
Nicht genügend Daten verfügbar
Modellentwicklung
8.6
51
Nicht genügend Daten verfügbar
8.9
54
Nicht genügend Daten verfügbar
8.3
53
Nicht genügend Daten verfügbar
8.7
52
Nicht genügend Daten verfügbar
Modellentwicklung
8.4
21
Nicht genügend Daten verfügbar
Machine-/Deep-Learning-Dienste
8.1
45
Nicht genügend Daten verfügbar
7.9
45
Nicht genügend Daten verfügbar
7.8
38
Nicht genügend Daten verfügbar
8.2
42
Nicht genügend Daten verfügbar
Machine-/Deep-Learning-Dienste
8.7
21
Nicht genügend Daten verfügbar
8.5
21
Nicht genügend Daten verfügbar
Einsatz
8.8
50
Nicht genügend Daten verfügbar
8.7
51
Nicht genügend Daten verfügbar
8.9
51
Nicht genügend Daten verfügbar
Generative KI
8.5
10
Nicht genügend Daten verfügbar
8.2
10
Nicht genügend Daten verfügbar
7.5
10
Nicht genügend Daten verfügbar
Agentic AI - Datenwissenschafts- und maschinelles Lernplattformen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten
Nicht genügend Daten
Skalierbarkeit und Leistung - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Kosten und Effizienz - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Integration und Erweiterbarkeit - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Sicherheit und Compliance - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Benutzerfreundlichkeit und Unterstützung - Generative KI-Infrastruktur
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Großes Sprachmodell-Betrieb (LLMOps)15 Funktionen ausblenden15 Funktionen anzeigen
Nicht genügend Daten
Nicht genügend Daten
Prompt-Engineering - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Inferenzoptimierung - Betriebsführung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Modellgarten - Operationalisierung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Benutzerdefiniertes Training - Betriebsführung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Anwendungsentwicklung - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Modellbereitstellung - Operationalisierung großer Sprachmodelle (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Leitplanken - Betrieb von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Modellüberwachung - Betrieb von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Sicherheit - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Gateways & Router - Operationalisierung von großen Sprachmodellen (LLMOps)
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Low-Code Machine-Learning-Plattformen6 Funktionen ausblenden6 Funktionen anzeigen
Nicht genügend Daten
Nicht genügend Daten
Datenaufnahme & -vorbereitung - Low-Code-Maschinenlernplattformen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Modellkonstruktion & Automatisierung - Low-Code-Maschinenlernplattformen
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten
Nicht genügend Daten
Statistisches Tool
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Datenanalyse
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Entscheidungsfindung
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Generative KI
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Nicht genügend Daten verfügbar
Kategorien
Kategorien
Geteilte Kategorien
Azure Machine Learning
Azure Machine Learning
BigML
BigML
Einzigartige Kategorien
BigML
BigML ist kategorisiert als Predictive Analytics
Bewertungen
Unternehmensgröße der Bewerter
Azure Machine Learning
Azure Machine Learning
Kleinunternehmen(50 oder weniger Mitarbeiter)
35.3%
Unternehmen mittlerer Größe(51-1000 Mitarbeiter)
25.9%
Unternehmen(> 1000 Mitarbeiter)
38.8%
BigML
BigML
Kleinunternehmen(50 oder weniger Mitarbeiter)
87.5%
Unternehmen mittlerer Größe(51-1000 Mitarbeiter)
8.3%
Unternehmen(> 1000 Mitarbeiter)
4.2%
Branche der Bewerter
Azure Machine Learning
Azure Machine Learning
Informationstechnologie und Dienstleistungen
28.2%
Computersoftware
14.1%
Unternehmensberatung
8.2%
Bildungsmanagement
5.9%
hochschulbildung
4.7%
Andere
38.8%
BigML
BigML
Computersoftware
83.3%
Unternehmensberatung
4.2%
Internationaler Handel und Entwicklung
4.2%
Elektro-/Elektronikfertigung
4.2%
Alternative Streitbeilegung
4.2%
Andere
0.0%
Top-Alternativen
Azure Machine Learning
Azure Machine Learning Alternativen
Vertex AI
Vertex AI
Vertex AI hinzufügen
Dataiku
Dataiku
Dataiku hinzufügen
Amazon SageMaker
Amazon SageMaker
Amazon SageMaker hinzufügen
Altair AI Studio
Altair AI Studio
Altair AI Studio hinzufügen
BigML
BigML Alternativen
Altair AI Studio
Altair AI Studio
Altair AI Studio hinzufügen
Alteryx
Alteryx
Alteryx hinzufügen
Dataiku
Dataiku
Dataiku hinzufügen
Tableau
Tableau
Tableau hinzufügen
Diskussionen
Azure Machine Learning
Azure Machine Learning Diskussionen
Wofür wird Azure Machine Learning Studio verwendet?
1 Kommentar
Akash R.
AR
Kurz gesagt, um hochwertige Modelle schneller und mit Vertrauen zu entwickeln, bereitzustellen und zu verwalten.Mehr erfahren
Monty der Mungo weint
Azure Machine Learning hat keine weiteren Diskussionen mit Antworten
BigML
BigML Diskussionen
Monty der Mungo weint
BigML hat keine Diskussionen mit Antworten