Imagen del Avatar del Producto

pandas python

Mostrar desglose de calificaciones
96 reseñas
  • Perfiles de 1
  • Categorías de 1
Calificación promedio de estrellas
4.6
Atendiendo a clientes desde
Filtros de perfil

Todos los Productos y Servicios

Imagen del Avatar del Producto
pandas python

96 reseñas

Pandas es una potente y flexible biblioteca de Python de código abierto diseñada para el análisis y manipulación de datos. Proporciona estructuras de datos rápidas, eficientes e intuitivas, como DataFrame y Series, que simplifican el manejo de datos estructurados (tabulares, multidimensionales, potencialmente heterogéneos) y de series temporales. Pandas pretende ser el bloque de construcción fundamental de alto nivel para el análisis de datos práctico y del mundo real en Python, ofreciendo una amplia gama de funcionalidades para agilizar las tareas de procesamiento de datos. Características y Funcionalidades Clave: - Manejo de Datos Faltantes: Pandas ofrece un manejo sencillo de datos faltantes, representados como `NaN`, `NA` o `NaT`, tanto en datos de punto flotante como en datos que no son de punto flotante. - Mutabilidad de Tamaño: Se pueden insertar y eliminar columnas de DataFrame y objetos de mayor dimensión, permitiendo una manipulación dinámica de datos. - Alineación de Datos: La alineación automática y explícita de datos asegura que los objetos puedan alinearse a un conjunto de etiquetas, facilitando cálculos precisos. - Operaciones de Agrupación: La funcionalidad de agrupación potente y flexible permite operaciones de dividir-aplicar-combinar en conjuntos de datos tanto para agregar como para transformar datos. - Conversión de Datos: Simplifica la conversión de datos indexados de manera diferente en otras estructuras de datos de Python y NumPy en objetos DataFrame. - Indexación y Subconjuntos: Proporciona segmentación inteligente basada en etiquetas, indexación avanzada y creación de subconjuntos de grandes conjuntos de datos. - Fusión y Unión: Facilita la fusión y unión intuitiva de conjuntos de datos. - Reestructuración y Pivotado: Ofrece reestructuración y pivotado flexibles de conjuntos de datos. - Etiquetado Jerárquico: Soporta el etiquetado jerárquico de ejes, permitiendo múltiples etiquetas por tick. - Herramientas de E/S Robustas: Incluye herramientas robustas para cargar datos de archivos planos (CSV y delimitados), archivos de Excel, bases de datos, y guardar/cargar datos del formato ultrarrápido HDF5. - Funcionalidad de Series Temporales: Proporciona funcionalidad específica para series temporales, incluyendo generación de rangos de fechas, conversión de frecuencias, estadísticas de ventanas móviles, y desplazamiento y retraso de fechas. Valor Principal y Soluciones para el Usuario: Pandas aborda los desafíos del análisis de datos ofreciendo un conjunto completo de herramientas que simplifican el proceso de manipulación, limpieza y análisis de datos. Sus estructuras de datos y funciones intuitivas permiten a los usuarios realizar operaciones complejas con un mínimo de código, mejorando la productividad y permitiendo el manejo eficiente de grandes conjuntos de datos. Al proporcionar una integración perfecta con otras bibliotecas y herramientas de Python, Pandas sirve como una piedra angular para los flujos de trabajo de ciencia de datos, empoderando a los usuarios para extraer conocimientos y tomar decisiones basadas en datos de manera efectiva.

Nombre del perfil

Calificación por estrellas

76
17
2
1
0

pandas python Reseñas

Filtros de reseñas
Nombre del perfil
Calificación por estrellas
76
17
2
1
0
AMIT J.
AJ
AMIT J.
IBM Certified Data Scientist | Python | R Programming | Machine Learning | Deep Learning | NLP | Computer Vision | AWS AIML | Azure Machine Learning | AI-MLOps | Snowflake | Cloud | Blogger
12/10/2021
Revisor validado
Fuente de la revisión: Invitación de G2
Revisión incentivada
Traducido Usando IA

reseña de pandas python

Para leer archivos CSV o de Excel, generalmente uso la biblioteca pandas en Python cada vez. Además, a veces la prefiero para visualización. Una vez que leo un archivo CSV en Python, con la ayuda del dataframe de pandas, realizar un análisis estadístico es muy fácil, hay muchas funciones integradas disponibles para usar. Una sola línea de programa puede ayudarte.
Usuario verificado en Atención hospitalaria y sanitaria
UA
Usuario verificado en Atención hospitalaria y sanitaria
11/29/2021
Revisor validado
Usuario actual verificado
Fuente de la revisión: Orgánico
Traducido Usando IA

Primera herramienta de ingeniero de datos

¡Hay un método para todo y una forma aún más eficiente de hacer lo que ya haces en Python! Esto no es solo agregar funcionalidad, sino mejorar la funcionalidad que ya tienes.
Pablo S.
PS
Pablo S.
Physician | Healthcare Strategy Consultant | Health Scientist
11/13/2021
Revisor validado
Usuario actual verificado
Fuente de la revisión: Invitación de G2
Revisión incentivada
Traducido Usando IA

Manipulación de datos con pandas

Pandas facilita la manipulación de datos en marcos de datos.

Acerca de

Contacto

Ubicación de la sede:
N/A

Social

@pypi

¿Qué es pandas python?

Pandas is a powerful and widely-used open-source data analysis and manipulation library for Python. It provides data structures such as DataFrame and Series, which facilitate the handling of structured data with ease and efficiency. Pandas offers tools for data cleaning, aggregation, and transformation, making it essential for data science and engineering tasks. The library is highly optimized for performance and works seamlessly with other data-centric Python libraries like NumPy and Matplotlib.

Detalles

Sitio web
pypi.org