Les solutions Logiciel de réseau de neurones artificiels ci-dessous sont les alternatives les plus courantes que les utilisateurs et les critiques comparent à Knet. D'autres facteurs importants à prendre en compte lors de la recherche d'alternatives à Knet comprennent designettraining. La meilleure alternative globale à Knet est Keras. D'autres applications similaires à Knet sont Microsoft Cognitive Toolkit (Formerly CNTK)etNVIDIA Deep Learning GPU Training System (DIGITS)etH2OetTFLearn. Les alternatives à Knet peuvent être trouvées dans Logiciel de réseau de neurones artificiels mais peuvent également être présentes dans Logiciel d'apprentissage automatique ou Plateformes de science des données et d'apprentissage automatique.
Keras est une bibliothèque de réseaux de neurones, écrite en Python et capable de fonctionner sur TensorFlow ou Theano.
Microsoft Cognitive Toolkit est un ensemble d'outils open-source de qualité commerciale qui permet à l'utilisateur d'exploiter l'intelligence au sein de vastes ensembles de données grâce à l'apprentissage profond en offrant une évolutivité, une vitesse et une précision sans compromis avec une qualité de niveau commercial et une compatibilité avec les langages de programmation et les algorithmes déjà utilisés.
NVIDIA Deep Learning GPU Training System (DIGITS) apprentissage profond pour la science des données et la recherche pour concevoir rapidement un réseau de neurones profond (DNN) pour les tâches de classification d'images et de détection d'objets en utilisant la visualisation du comportement du réseau en temps réel.
TFlearn est une bibliothèque de deep learning modulaire et transparente construite sur Tensorflow qui fournit une API de plus haut niveau à TensorFlow afin de faciliter et d'accélérer les expérimentations, tout en restant entièrement transparente et compatible avec celui-ci.
Votre chemin : Installez PyTorch localement ou lancez-le instantanément sur des plateformes cloud prises en charge.
AIToolbox est une boîte à outils de modules d'IA écrits en Swift : Graphes/Arbres, Régression Linéaire, Machines à Vecteurs de Support, Réseaux Neurones, ACP, KMeans, Algorithmes Génétiques, MDP, Mélange de Gaussiennes, Régression Logistique.
Conteneurs préconfigurés et optimisés pour les environnements d'apprentissage profond.
Les AMI de Deep Learning d'AWS sont conçus pour équiper les data scientists, les praticiens de l'apprentissage automatique et les chercheurs avec l'infrastructure et les outils nécessaires pour accélérer le travail en apprentissage profond, dans le cloud, à n'importe quelle échelle.
Neuton, une plateforme AutoML, permet aux utilisateurs expérimentés et à ceux sans aucune expérience en apprentissage automatique de créer des modèles d'IA compacts en quelques clics et sans codage. Neuton est basé sur un cadre de réseau neuronal propriétaire inventé et breveté par notre équipe de scientifiques qui est bien plus efficace que tout autre cadre, algorithme non neuronal sur le marché. Ses modèles résultants sont auto-croissants, beaucoup plus compacts, rapides et nécessitent moins d'échantillons d'entraînement par rapport à ceux d'autres solutions.